
Arbeitsblatt inf11 06.01.2021

Die range-Anweisung definiert einen Bereich ganzer Zahlen.

range(10) definiert den Bereich 0, 1, . . . , 9
range(4,21) definiert den Bereich 4, 5, . . . , 20
range(4,21,3) definiert den Bereich 4, 7, 10, . . . , 16, 19
range(-4,3) definiert den Bereich -4, -3, -2, -1, 0, 1, 2

Allgemein gilt:

range(start, stop)
definiert den Bereich start, , stop-1 ganzer Zahlen,

range(start, stop, step)
definiert den Bereich start, . . . mit der Schrittweite step, wobei die Zahl
stop nicht mehr enthalten ist.

Erstellen einer Liste ganzer Zahlen

a = list(range(4,13)) erzeugt die Liste
[4, 5, 6, 7, 8, 9, 10, 11, 12];
die (in diesem Fall 9) Elemente dieser Liste heißen auch Komponenten, auf die
man mit a[0], a[1], . . . , a[8] zugreifen kann.

Bemerkung: Unter einem Feld oder einem array verstehen wir eine Folge von

Variablen gleichen Typs; mit vorstehendem Beispiel haben wir also
ein array a ganzer Zahlen erzeugt mit den Komponenten
a[0], a[1], . . . , a[8].

Python-Quelltext:

Ausgabe:

 2

For-Schleife

Das Python-Programm

n = int(input('n = '))

for i in range(1,n):
 print(i)

gibt nach Eingabe der natürlichen Zahl n die Zahlen 1, 2, . . . , n-1 aus; probiert
es aus!

Algorithmus zur Bestimmung der Summe der Zahlen 1, , n mit Verwendung
einer for-Schleife:

Arbeitsaufträge:

1. Schreibe und teste ein Python-Programm, um die ersten 20 Zahlen der

Siebener-Reihe auszugeben (also die Zahlen 7, 14, 21, . . .).

2. Erstelle gemäß dem vorstehenden screenshot den Python-Programmtext zur

Berechnung der Summe 1 + . . . + n und teste das Programm mit
unterschiedlichen Eingaben.

3. Formuliere und teste ein Python-Programm, welches nach Eingabe der

natürlichen Zahl k die Summe der ersten k ungeraden natürlichen Zahlen
bestimmt, und zwar mit Verwendung einer for-Schleife.

4. Formuliere und teste ein Python-Programm, welches nach Eingabe der

natürlichen Zahl n das Produkt der Zahlen 1, . . . , n zu berechnet (for-
Schleife!).

Informatik 11
14.01.2021

Wir kennen bereits die numerischen Datentypen float und integer.

Beispiele:

>>> print(11 / 6) Quotient zweier ganzer Zahlen
1.8333333333333333

>>> print(2 ** 0.5) Wurzel aus 2
1.4142135623730951

>>> print(27 / 4) Quotient zweier ganzer Zahlen
6.75

>>> print(27 // 4) ganzzahliger Quotient (27 : 4 = 6 Rest 3)
6

>>> print(27 % 4) Rest bei ganzzahliger Division
3

>>> print(7 * 12) Produkt ganzer Zahlen
84

>>> print(0.8 * (-7.5)) Produkt zweier Kommazahlen
-6.0

Datentyp boolean

Eine Boolesche Variable oder ein Boolescher Ausdruck (Term) nimmt nur zwei Werte an:
True oder False
(oder abkürzend: 1 oder 0; in Python sind True oder False zu verwenden)

Insbesondere sind folgende Terme Boolesche Ausdrücke, deren Wert sich auch einer
Variablen zuweisen läßt:

8 > 5 hat den Wert True
7 == 8 hat den Wert False
7 != 8 hat den Wert True
x hat den Wert True nach der Wertzuweisung x = 7 < 12
x hat den Wert False nach der Wertzuweisung x = (0 == 6)

Wir definieren die Verknüpfungen and und or sowie die Operation not jeweils über eine
Wahrheitstafel:

a b a or b a b a and b a not a

False False False False False False False True

False True True False True False True False

True False True True False False

True True True True True True

Aufgabenblatt Nr. 3 inf11 18.01.2021

Hinweis:
Wiederholungen können wahlweise als while- oder for-Schleife formuliert werden.

7. Der Algorithmus SCHALTJAHR verlangt als Eingabe eine Jahreszahl und gibt aus, ob

das eingegebene Jahr ein Schaltjahr ist.
 Regeln:

 Formuliere den Algorithmus als Struktogramm und als Python-Programm.

8. Erstelle ein Python-Programm, welches nach Eingabe einer natürlichen Zahl n die

Summe sum mit

 sum = 1 + 1/2 + 1/3 + 1/4 + + 1/n berechnet, und teste das

Programm für unterschiedliche Eingaben.

9. Ein Algorithmus, der die natürlichen Zahlen a und b als Eingabe verlangt und als Er-

gebnis die Zahl z ausgibt, ist durch folgendes Struktogramm gegeben:

 Schreibe diesen Algorithmus als Python-Programm und teste ihn mit unterschiedli-
chen Eingaben; was bewirkt der Algorithmus vermutlich?

 Hinweise: Unter x // 2 verstehen wir den ganzzahligen Quotient bei der
 Division von x durch 2.

 Eine Zahl x ist genau dann gerade, wenn sie durch 2 ohne Rest teilbar
ist, d. h. wenn gilt: x % 2 = 0.

Jahreszahl
- nicht durch 4 teilbar: kein Schaltjahr
- durch 4 teilbar: Schaltjahr
- durch 100 teilbar: kein Schaltjahr
- durch 400 teilbar: Schaltjahr

Aufgabenblatt Nr. 4 inf11 26.01.2021

10. Der Algorithmus PRIMZAHLTEST

Definition: Eine natürliche Zahl n heißt Primzahl genau dann, wenn sie nur
durch 1 und durch sich selbst jeweils ohne Rest teilbar ist.

 Aufgabe: Konzipiere einen Algorithmus (als Struktogramm und als Python-
Programm), der nach Eingabe einer natürlichen Zahl n entscheidet, ob n die Prim-
zahleigenschaft hat.

 Hinweis: Teste für alle in Frage kommenden Teiler (Divisoren) t, ob n % t gleich 0 ist.

11. BOOLESCHE VARIABLE oder BOOLESCHE TERME können nur zwei Werte annehmen:

True oder False.
 Die Verknüpfungen and und or sowie die Operation not werden bekanntlich jeweils

über eine Wahrheitstafel definiert.

 Wir verwenden folgende abkürzende Schreibweisen (a, b, c sind Boolesche Variable):

 a and b = a  b = a b
 a or b = a + b
 not a =  a

 Dabei gelte auch die aus der Algebra bekannte Vereinbarung: “Punkt vor Strich”, d. h.
 a + (b  c) = a + b  c = a + b c

 Eine Auswahl von Rechenregeln für Boolesche Variable:

 Kommutativgesetze

 (1) a + b = b + a (1’) a  b = b  a

Assoziativgesetze

 (2) a + (b + c) = (a + b) + c (2’) a  (b  c) = (a  b)  c

 Distributivgesetze

 (3) a  (b + c) = a  b + a  c (3’) a + b  c = (a + b)(a + c)

 Beweis von (3):

a b c b + c a(b + c) ab ac ab + ac
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

 Da die Spalten zu a(b + c) und ab + ac übereinstimmen, gilt: a(b + c) = ab + ac .

Aufgaben: a) Beweise die Rechengesetze (2) und (3’).

 b) Zeige: (a  b) + c  a  (b + c)

Informatik 11 10.02.2021

Lösungen zu den Aufgabenblättern Nr. 3 (18.01.2021) und Nr. 4 (26.01.2021)

Aufgabe 7 (Algorithmus Schaltjahrbestimmung)

Struktogramm I (Christian):

Python-Quelltext I:

Struktogramm II (Marvin):

 2

Python-Quelltext II:

Hinweis:
Zu Version II beachte unbedingt die Bemerkung innerhalb der Lösung zu Aufgabe
11.b)!

Aufgabe 8 (Harmonische Reihe)

Python-Quelltext (Max):

Aufgabe 9 (Algorithmus zur Multiplikation zweier natürlicher Zahlen a und b)

Python-Quelltext (Marvin):

 3

Aufgabe 10 (Algorithmus Primzahltest)

Struktogramm I (Marvin): Python-Quelltext I (Laura):

Anmerkung: Statt if prim == True: schreibe kürzer: if prim:

Python-Quelltext II

Die Laufzeit des Algorithmus können wir optimieren (insbesondere bei großen Zahlen
n), indem die zu prüfende Zahl n nur durch solche Divisoren i ganzzahlig geteilt wird,
deren Quadrat nicht größer als n ist (die also nicht größer sind als die Wurzel aus n).

Außerdem wird berücksichtigt, daß die Zahl 1 definitionsgemäß keine Primzahl ist.

Aufgabe 11 (Boolesche Variable und Boolesche Terme)
Lösungen zu Teil a) (Rechengesetz (3’): Christian) und Teil b)

x
Text Box
Lösung zu Aufgabe 11.a) von Aufgabenblatt Nr. 4

Lösung zu Aufgabe 11.b) von Aufgabenblatt Nr. 4

(a and b) or c  a and (b or c)

a and b or c  a and (b or c)

a  b + c  a  (b + c)

a b c a and b (a and b) or c b or c a and (b or c)

0 0 0 0 0 0 0

0 0 1 0 1 1 0

0 1 0 0 0 1 0

0 1 1 0 1 1 0

1 0 0 0 0 0 0

1 0 1 0 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1

Bemerkung zum Algorithmus „Schaltjahr“ (Nr. 7 Blatt 3):

j%4==0
a

j%100!=0
b

j%400==0
c a and b (a and b) or c b or c a and (b or c)

j

teilbar

0 0 0 0 0 0 0
nicht durch 4
durch 100
nicht durch 400

0 0 1 0 1 1 0
nicht durch 4
durch 100
durch 400

0 1 0 0 0 1 0
nicht durch 4
nicht durch 100
nicht durch 400

0 1 1 0 1 1 0
nicht durch 4
nicht durch 100
durch 400

1 0 0 0 0 0 0
durch 4
durch 100
nicht durch 400

1 0 1 0 1 1 1
durch 4
durch 100
durch 400

1 1 0 1 1 1 1
durch 4
nicht durch 100
nicht durch 400

1 1 1 1 1 1 1
durch 4
nicht durch 100
durch 400

Das Jahr j ist Schaltjahr genau dann, wenn gilt:

[(j%4==0 and j%100!=0) or j%400==0] == True

Da nur die nicht kursiv geschriebenen Zeilen in Frage kommen können, gilt hier:

(j%4==0 and j%100!=0) or j%400==0 = j%4==0 and (j%100!=0 or j%400==0)

Aufgabenblatt Nr. 5 inf11 16.02.2021

12. Die Datenstruktur „array“ (siehe auch Arbeitsblatt vom 06.01.2021; unter einem

array verstehen wir eine Folge von Variablen gleichen Typs) läßt sich in Python als
Liste erzeugen. Wiederhole durch selbständiges Üben:

- „range“-Anweisung

- Vereinbaren eines arrays a mit der „list“-Anweisung

- Zugriff (Ausgabe und Zuweisung von Werten) auf die Komponenten a[0], a[1], . .
des als Liste a definierten arrays

- „append“-Anweisung

- Erzeugen von Zufallszahlen und deren Zuweisung an die Komponenten des arrays

Man orientiere sich an den screenshots der letzten BBB-Konferenz, die am
11.02.2021 gemailt wurden.

13. Die Algorithmen MinSuche und MaxSuche
 Nach Eingabe einer natürlichen Zahl n werden den n Komponenten eines arrays a

Zufallszahlen aus dem Bereich (1,100000) zugewiesen; MinSuche bestimmt die
kleinste Zahl und gibt diese aus.

a) Erstelle und teste ein Python-Programm zu MinSuche!
 Beispiel für n = 10 (Benedikt):

Ausgabe:

b) Erstelle und teste ein Python-Programm zu MaxSuche!

14. Der Algorithmus Zulassung ermittelt, ob jemand zur Jahrgangsstufe 12 zugelassen
wird (Bestimmungen: MSS-Broschüre MSS_2022_G9_WEB.pdf, pp. 24 – 26).

a) Welche Daten sind zu erfassen?

b) Überlege eine geeignete Datenstruktur für die zu erfassenden und auszuwerten-
den Daten.

c) Erstelle ein Struktogramm.

d) Schreibe und teste ein Python-Programm.

Informatik 11 18.02.2021

Für die folgenden Algorithmen MinSuche, MinSuche2, SelectionSort gilt:

Nach Eingabe einer natürlichen Zahl n werden den n Komponenten
a[0], a[1], , a[n-1] einer Liste a Zufallszahlen zugewiesen.

Die Quelliste und die verarbeitete Liste werden jeweils ausgegeben.

Algorithmus MinSuche

Der Algorithmus MinSuche bestimmt das kleinste Element der Liste a und weist
es der Komponente a[0] zu.

Quelltext in Python:

Beispiel für n = 10:

 2

Algorithmus MinSuche2

Der Algorithmus MinSuche2 bestimmt die zwei kleinsten Elemente der Liste a
und weist diese den Komponenten a[0] und a[1] zu.

Quelltext in Python:

Beispiel für n = 10:

 3

Algorithmus SelectionSort
(„Sortieren durch direkte Auswahl“)

Der Algorithmus SelectionSort bestimmt
- das kleinste Element der Liste a[0], a[1], , a[n-1] und weist

dieses der Komponente a[0] zu,
- das kleinste Element der Liste a[1], , a[n-1] und weist dieses der

Komponente a[1] zu,
- das kleinste Element der Liste a[2], , a[n-1] und weist dieses der

Komponente a[2] zu,
-
-
- das kleinste Element der Liste a[n-2], , a[n-1] und weist dieses

der Komponente a[n-2] zu.

Auf diese Weise gelingt es, die Komponenten der Liste a der Größe nach zu
sortieren.

Quelltext in Python:

Beispiel für n = 10:

Nach erfolgter, d. h. mit „Enter“

abgeschlossener Eingabe einer der

Variablen name zugewiesenen

Zeichenkette erfolgt jeweils die Abfrage,

ob die Datenerfassung fortgesetzt

werden soll; die Antwort wird als

character (Zeichen; hier: y oder n) in

der Variablen answer gespeichert.

Der Wert des Booleschen Terms

answer == y (True oder False)

wird der Booleschen Variablen

condition zu gewiesen; solange

condition den Wert True hat, wird

die Eingabe fortgesetzt (Schleifenrumpf

der while-Schleife), und der für i>0

neu eingegebene, in der Variablen name

als Zeichenkette erfaßte Name wird mit

a.append(name) der Liste a

angefügt.

Falls man als Antwort auf die Frage, ob

man weitermachen möchte, nicht y

eingibt, nimmt answer == y den

Wert False an, die Eingabe wird

abgebrochen. Nach der Ausgabe der

eingegebenen Liste und dem Sortieren

erfolgt die Ausgabe der sortierten Liste.

Aufwandsbetrachtung „Sortieren durch direkte Auswahl“ (SelectionSort)

Wir formulieren einen Zusammenhang zwischen dem zeitlichen Aufwand, um eine Liste
von n Datenelementen (z. B. Zufallszahlen, Namen) der Größe nach zu sortieren, und der
Anzahl n der Datenelemente.

Wertzuweisungen, Abfragen und Rechenoperationen sind elementare Anweisungen, die
eine bestimmte Rechenzeit erfordern; obwohl diese Rechenzeiten mit fortschreitender
Leistungsfähigkeit der Hardware immer kürzer werden, gerät man rasch an Grenzen der
praktischen Durchführbarkeit eines Algorithmus, wenn die Anzahl der abzuarbeitenden
Anweisungen zu stark wächst.

Wesentlicher Baustein des Algorithmus „Sortieren durch direkte Auswahl“ ist der
Schleifenrumpf der inneren for-Schleife (hier: rot gekennzeichnet), der das kleinste
Element innerhalb des arrays a[j], . . , a[n-1] ermittelt und dieses der Komponente
a[j] zuweist:

for j in range(0,n-1):
 min = a[j]
 for i in range(j+1,n):
 if min > a[i]:
 min = a[i]
 a[i] = a[j]
 a[j] = min

Dieser rot markierte Schleifenrumpf besteht aus 3 Wertzuweisungen und 1 Abfrage, die wir
gedanklich als ganzes zum Anweisungsblock A zusammenfassen:

for j in range(0,n-1):
 min = a[j]
 for i in range(j+1,n):

 A

Für j=0 nimmt der Schleifenindex i der inneren Schleife alle Werte von 1 bis n1 an,
folglich wird der Anweisungsblock A (n1)-mal ausgeführt.
Für j=1 nimmt der Schleifenindex i der inneren Schleife alle Werte von 2 bis n1 an,
folglich wird Block A (n2)-mal ausgeführt.
Für j=2 nimmt der Schleifenindex i der inneren Schleife alle Werte von 3 bis n1 an,
folglich wird Block A (n3)-mal ausgeführt.

In der folgenden Tabelle notieren wir für jeden Wert von j jeweils den Bereich, den i
durchläuft, und die daraus sich ergebende Anzahl z(j), die angibt, wie oft der
Anweisungsblock A durchlaufen wird:

Index j Index i z(j)

j = 0 1  i  n-1 n-1

j = 1 2  i  n-1 n-2

j = 2 3  i  n-1 n-3

j = 3 4  i  n-1 n-4

j = 4 5  i  n-1 n-5

....

....

j = n-3 n-2  i  n-1 2

j = n-2 n-1  i  n-1 1

Gesamtzahl z der Abarbeitungen von Anweisungsblock A:

z = z(0) + z(1) + z(2) + z(3) + + z(n-3) + z(n-2)
z = (n-1) + (n-2) + + 2 + 1
z = ½  (n – 1)  n
z = ½  n2 – ½  n  ½  n2 für große Werte von n

Ergebnis: Bei SelectionSort wächst der Rechenaufwand zum Sortieren einer aus

n Elementen bestehenden Liste quadratisch mit n.

Aufgabenblatt Nr. 6 inf11 22.03.2021
mit Lösungen zu Nr. 15 – Nr. 18 aus der BBB-Konferenz vom 25.03.2021

15. BOOLESCHE TERME

Schreibweisen für die Negation:
not a =  a = a

Wir ergänzen die in Aufgabe 11 (Blatt 4, 26.01.2021) für Boolesche Variable formu-
lierten Rechenregeln
- Kommutativgesetze (1) und (1’)
- Assoziativgesetze (2) und (2’)
- Distributivgesetze (3) und (3’)
um die beiden Gesetze von de Morgan:

(4) a b = a b  (4’) a + b = a b

Aufgabe: Beweise (4) (Hinweis: Wahrheitstafel!)

Lösung (Nils):

a b a  b not (a  b) not a not b not a + not b

0 0 0 1 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1

1 1 1 0 0 0 0

Da die Spalten zu not (a  b) und not a + not b übereinstimmen, gilt:

not (a  b) = not a + not b

16. Erstelle einen in Python geschriebenen Quelltext zu folgendem Struktogramm:

 2

 Lösung (Philipp):

17. In der Zusammenfassung MinSuche_SelectionSort.pdf werden die Algorithmen

MinSuche, MinSuche2 und SelectionSort noch einmal erläutert.

 Aufgabe: Formuliere bei

a) MinSuche die for-Schleife zur Bestimmung des kleinsten Elements,

b) SelectionSort die beiden for-Schleifen zum Sortieren

jeweils als while-Schleifen und überprüfe die so erhaltenen Python-Programme an-
hand von Testläufen.

Lösung zu a) (Benedikt):

 3

Lösung zu b) (Christian):

Testlauf (n = 20):

18. Erstelle jeweils ein Struktogramm zu MinSuche und SelectionSort (Hinweis: ver-
wende bevorzugt die Versionen mit while-Schleife, Aufgabe 17; für die Zuweisung
von Zufallszahlen an die Komponenten des arrays a genügt es zu schreiben: „Zuwei-
sung von Zufallszahlen an a[0], . . . , a[n-1]“)

 4

 Struktogramme (Marvin):

 5

19. Freiwillige Aufgabe:

Der Algorithmus SelectionSort (Quelltext: SelectionSort_04-03-2021.py) vertauscht
die Inhalte der Speicherplätze a[j] und a[i], j < i < n, immer dann, wenn ein kleine-
res a[i] als a[j] gefunden wurde; hier gibt es noch Optimierungspotential, um die Re-
chenzeit insgesamt zu verkürzen. Ergreife diese Möglichkeit und teste! (Die Laufzeit
zum Sortieren läßt sich für große Werte von n etwa halbieren.)

