
Prinzipien zur Formulierung eines Algorithmus

Imperativer Ansatz

Der Quellcode (formuliert in einer Programmiersprache, z. B. Pascal, Java oder
Python) besteht aus einer Folge von ausführbaren Anweisungen, die in der vorge-
gebenen Reihenfolge nacheinander abgearbeitet werden.

Wesentliche Kontrollstruktur: Iteration (realisiert als for- oder while-Schleife)

Funktionaler Ansatz

Die Formulierung des Quellcodes orientiert sich der inneren, in der Regel mathe-
matischen Struktur eines Algorithmus.

Wesentliche Kontrollstruktur: Rekursion

Definition:
Eine Prozedur (Teilprogramm, Subroutine) oder eine Funktion heißt rekursiv,
wenn deren Anweisungsblock mindestens einen Aufruf von sich selbst enthält.

Bei beiden Ansätzen ist durch eine Abbruchbedingung sicherzustellen, daß der
Algorithmus terminiert, also nach endlich vielen Schritten beendet wird und zu
einem Ergebnis führt.

Beispiel 1: Die Fakultätsfunktion (engl.: factorial)

Wir ordnen jeder natürlichen Zahl n, n  0, die Zahl n! (lies: n-Fakultät) zu:

0! = 1
n! = 1  2   n falls n > 0

Berechnung von n! gemäß imperativem Ansatz

 2

Berechnung von n! gemäß funktionalem Ansatz

 Die Funktion n  fact(n) läßt sich rekursiv definieren:

 Rekursionsanfang: fact(0) = 1
 Rekursionsvorschrift: fact(n) = n  fact(n-1) , falls n > 0

Übungsaufgabe:

Der Algorithmus GAUSS, der nach Eingabe einer natürlichen Zahl n die Summe
der Zahlen 1, . . . , n ermittelt, läßt sich sowohl imperativ als auch funktional pro-
grammieren.
Ergreife diese beiden Möglichkeiten, indem jeweils ein Python-Quelltext erstellt
wird (imperativ: Implementierung einer for- oder while-Schleife, mit Struk-
togramm; funktional: Implementierung einer rekursiv definierten Funktion)

Beispiel 2: Der Algorithmus ggT (größter gemeinsamer Teiler)

Nach Eingabe zweier natürlicher Zahlen a und b bestimmt ggT die größte ganze
Zahl, durch die sich a und b jeweils ohne Rest teilen lassen.

a) Imperativer Ansatz, formuliert als iterativer Algorithmus
 („Euklidischer Algorithmus“)
 Struktogramm:

 3

b) Funktionaler Ansatz, formuliert als rekursiv definierte Funktion

 Die Funktion (a, b)  ggT(a,b) läßt sich rekursiv definieren:

 Rekursionsanfang: ggT(a,a) = a

 Rekursionsvorschrift: ggT(a,b) = ggT(a–b, b) , falls a > b

 ggT(a,b) = ggT(a, b–a) , falls b > a

Aufgabe:
Realisiere den Algorithmus ggT als iteratives und als rekursives Python-
Programm; vergleiche die Laufzeiten.

Beispiel 3: Die Hofstadter-Funktion

Die Funktion hof ist rekursiv definiert, n  {1, 2, 3, } :

Rekursionsanfang: hof(1) = 1
 hof(2) = 1

Rekursionsvorschrift: hof(n) = hof(n - hof(n - 1)) + hof(n - hof(n - 2)) , n>2

Aufgabe:
Codiere den Algorithmus hofstadter

a) rekursiv,
b) iterativ

jeweils in Python; vergleiche insbesondere die Laufzeiten!

Hinweis zu b): Definiere in geeigneter Weise ein array (Feld; in Python: Liste), in
dem bereits berechnete Funktionswerte gespeichert werden.

 16.06.2021

