Aufgabenblatt Nr. 8 infl11 24.06.2021

25.

26.

Fibonacci-Folge

Firne{0,1,2,3,..... } 1aBt sich die Fibonacci-Folge rekursiv definieren:
Rekursionsanfang: fibo(0) =0

fibo(1) =1
Rekursionsvorschrift: fibo(n) = fibo(n-1) + fibo(n-2) fallsn>1

(In Worten: fiir n > 1 erhdlt man das n-te Folgenglied als Summe der beiden voran-
gehenden Folgenglieder.)

a) Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf, welches
nach Eingabe von n den Wert fibo(n) ausgibt (oder: alle Werte fibo(0), . . .,
fibo(n)); implementiere auch eine Variable z, welche die Anzahl der Funktions-
aufrufe ausgibt.

Ermittle den Zeitbedarf, den die Berechnung von fibo(n) erfordert.

Bemerkung: Hier handelt es sich um einen Algorithmus mit exponentieller Kom-
plexitédt, denn die Anzahl z der Funktionsaufrufe wachst exponentiell mit n; bei n =
38, 39, 40, . . nimmt die Berechnung bereits sehr viel Zeit in Anspruch.

b) Wenn man 1ru_cache des Python-Moduls functools nutzt, 1aBt sich die Lauf-
zeit erheblich verbessern (hier werden bereits berechnete Werte in einem cache
zwischengespeichert); allerdings kommt man mit 1ru_cache bei der Berechnung
der Ackermann-Funktion (Aufgabe 26) wegen derer ungeheuren Rekursionstiefe
kaum weiter: acker(3,9) laBt sich noch berechnen, bei acker(3,10) oder
acker(4,n), n>0, ist SchluB.

functools imj lru cache

imt{input{"m = "))
0

]
=

Blru cache (maxsize=64)
Fiboin) :

C) Schreibe und teste ein imperativ formuliertes Python-Programm, z. B. indem die
Werte der Fibonacci-Folge in einem array mit den Komponenten a[0], a[1],,
a[n] abgelegt werden (setze a[0] = 0 und a[1] = 1). Vergleiche die Laufzeit mit
dem funktional formulierten Algorithmus aus a).

Die Ackermann-Funktion
Firm,ne{0,1,2,3,..... } ist die Ackermann-Funktion f wie folgt definiert:
Rekursionsanfang: (1) f(O,n) = n+1
Rekursionsvorschrift: (2) f(m,0) = f(m-1, 1)
(3) f(m,n) = f(m-1, f(m,n-1))

a) Man erhdlt: f(0,0) =1, f(0,1) =2, f(0,2) =3, f(1,0)=f(0,1)=2
Berechne f(2,0); f(1,1); f(1,2); f(3,0).

b) Schreibe den Algorithmus zur Berechnung der Ackermann-Funktion als Python-
Programm mit rekursivem Funktionsaufruf.
Implementiere eine Zahlvariable z, um die Anzahl der Funktionsaufrufe bestim-
men; ermittle den Zeitbedarf zur Laufzeit.

Berechne f(3,7); f(3,8); f(4,0); f(3,8); f(3,9); f(4,1); f(4,2)

Bemerkung: Die Ackermann-Funktion ist eine berechenbare Funktion, allerdings
Ubersteigt deren ungeheure Rekursionstiefe sehr schnell die Méglich-
keiten jedes auch noch so leistungsféhigen Computers!

