
Aufgabenblatt Nr. 8 inf11 24.06.2021

25. Fibonacci-Folge

 Für n  {0, 1, 2, 3, } läßt sich die Fibonacci-Folge rekursiv definieren:

 Rekursionsanfang: fibo(0) = 0
 fibo(1) = 1

 Rekursionsvorschrift: fibo(n) = fibo(n1) + fibo(n2) falls n > 1

(In Worten: für n > 1 erhält man das n-te Folgenglied als Summe der beiden voran-
gehenden Folgenglieder.)

a) Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf, welches
nach Eingabe von n den Wert fibo(n) ausgibt (oder: alle Werte fibo(0), . . . ,
fibo(n)); implementiere auch eine Variable z, welche die Anzahl der Funktions-
aufrufe ausgibt.

 Ermittle den Zeitbedarf, den die Berechnung von fibo(n) erfordert.

 Bemerkung: Hier handelt es sich um einen Algorithmus mit exponentieller Kom-
plexität, denn die Anzahl z der Funktionsaufrufe wächst exponentiell mit n; bei n =
38, 39, 40, . . nimmt die Berechnung bereits sehr viel Zeit in Anspruch.

b) Wenn man lru_cache des Python-Moduls functools nutzt, läßt sich die Lauf-
zeit erheblich verbessern (hier werden bereits berechnete Werte in einem cache
zwischengespeichert); allerdings kommt man mit lru_cache bei der Berechnung
der Ackermann-Funktion (Aufgabe 26) wegen derer ungeheuren Rekursionstiefe
kaum weiter: acker(3,9) läßt sich noch berechnen, bei acker(3,10) oder
acker(4,n), n>0, ist Schluß.

c) Schreibe und teste ein imperativ formuliertes Python-Programm, z. B. indem die

Werte der Fibonacci-Folge in einem array mit den Komponenten a[0], a[1], ,
a[n] abgelegt werden (setze a[0] = 0 und a[1] = 1). Vergleiche die Laufzeit mit
dem funktional formulierten Algorithmus aus a).

26. Die Ackermann-Funktion

Für m, n  {0, 1, 2, 3, } ist die Ackermann-Funktion f wie folgt definiert:

 Rekursionsanfang: (1) f(0,n) = n+1

 Rekursionsvorschrift: (2) f(m,0) = f(m-1, 1)
 (3) f(m,n) = f(m-1, f(m,n-1))

a) Man erhält: f(0,0) = 1, f(0,1) = 2, f(0,2) = 3, f(1,0) = f(0,1) = 2
Berechne f(2,0); f(1,1); f(1,2); f(3,0) .

b) Schreibe den Algorithmus zur Berechnung der Ackermann-Funktion als Python-
Programm mit rekursivem Funktionsaufruf.

 Implementiere eine Zählvariable z, um die Anzahl der Funktionsaufrufe bestim-
men; ermittle den Zeitbedarf zur Laufzeit.

 Berechne f(3,7); f(3,8); f(4,0); f(3,8); f(3,9); f(4,1); f(4,2)

Bemerkung: Die Ackermann-Funktion ist eine berechenbare Funktion, allerdings
 übersteigt deren ungeheure Rekursionstiefe sehr schnell die Möglich-

keiten jedes auch noch so leistungsfähigen Computers!

