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25. Fibonacci-Folge 
 

 Für n  {0, 1, 2, 3, . . . . . } läßt sich die Fibonacci-Folge rekursiv definieren: 
 

 Rekursionsanfang: fibo(0) = 0 
  fibo(1) = 1 
 

 Rekursionsvorschrift: fibo(n) = fibo(n1) + fibo(n2)     falls n > 1 
 

(In Worten: für n > 1 erhält man das n-te Folgenglied als Summe der beiden voran-
gehenden Folgenglieder.)  

 

a)  Schreibe und teste ein Python-Programm mit rekursivem Funktionsaufruf, welches 
nach Eingabe von n den Wert fibo(n) ausgibt (oder:  alle Werte fibo(0), . . . ,  
fibo(n));  implementiere auch eine Variable z, welche die Anzahl  der Funktions-
aufrufe ausgibt. 

 Ermittle den Zeitbedarf, den die Berechnung von fibo(n) erfordert. 
  

 Bemerkung: Hier handelt es sich um einen Algorithmus mit exponentieller Kom-
plexität, denn die Anzahl z der Funktionsaufrufe wächst exponentiell mit n; bei n = 
38, 39, 40, . .  nimmt die Berechnung bereits sehr viel Zeit in Anspruch.  

 

b) Wenn man lru_cache des Python-Moduls functools nutzt, läßt sich die Lauf-
zeit erheblich verbessern (hier werden bereits berechnete Werte in einem cache 
zwischengespeichert); allerdings kommt man mit lru_cache bei der Berechnung 
der Ackermann-Funktion (Aufgabe 26) wegen derer ungeheuren Rekursionstiefe 
kaum weiter: acker(3,9) läßt sich noch berechnen, bei acker(3,10) oder  
acker(4,n), n>0, ist Schluß.  
 

  
c) Schreibe und teste ein imperativ formuliertes Python-Programm, z. B. indem die 

Werte der Fibonacci-Folge in einem array mit den Komponenten a[0], a[1], . . . . , 
a[n] abgelegt werden (setze a[0] = 0 und a[1] = 1). Vergleiche die Laufzeit mit 
dem funktional formulierten Algorithmus aus a). 

 
26. Die Ackermann-Funktion 

Für m, n  {0, 1, 2, 3, . . . . . }  ist die Ackermann-Funktion f wie folgt definiert: 
 

 Rekursionsanfang: (1)   f(0,n)  =  n+1 
 

 Rekursionsvorschrift: (2)   f(m,0)  =  f(m-1, 1) 
    (3)   f(m,n)  =  f(m-1,  f(m,n-1)) 
 

a) Man erhält:   f(0,0) = 1,   f(0,1) = 2,   f(0,2) = 3,    f(1,0) = f(0,1) = 2 
Berechne  f(2,0);   f(1,1);   f(1,2);   f(3,0) . 

 

b) Schreibe den Algorithmus zur Berechnung der Ackermann-Funktion als Python-
Programm mit rekursivem Funktionsaufruf.  

 Implementiere eine Zählvariable z, um die Anzahl der Funktionsaufrufe bestim-
men; ermittle den Zeitbedarf zur Laufzeit. 

 

 Berechne  f(3,7);  f(3,8);  f(4,0);  f(3,8); f(3,9); f(4,1); f(4,2) 
 

Bemerkung:  Die Ackermann-Funktion ist eine berechenbare Funktion, allerdings 
 übersteigt deren ungeheure Rekursionstiefe sehr schnell die Möglich-

keiten jedes auch noch so leistungsfähigen Computers! 
 
 


