FORMALE SPRACHEN

Syntax: ,Lehre vom Satzbau"
Die Syntax beschreibt die GesetzmadBigkeiten, gemaB denen Woérter zu einem Satz zu-
sammengefligt werden.

Semantik: ,Lehre von der Bedeutung (von Zeichen, Wértern und Satzen)"

Analyse folgenden Satzes:

,Die Katze jagt die Maus"

Syntaxbaum:

Satz
A
o N
Nominalgruppe Verbalgruppe
A A
- N r A
Artikel Substantiv Verb Nominalgruppe
A
r A
Artikel Substantiv

Eine Grammatik wird wesentlich beschrieben durch ein System von Regeln, z.B. in der
Backus-Naur-Form (BNF-Notation):

<SATZ> = <NOMINALGRUPPE> <VERBALGRUPPE>
<NOMINALGRUPPE> = <ARTIKEL> <SUBSTANTIV>
<VERBALGRUPPE> = <VERB> <NOMINALGRUPPE>

<VERB> = jagt | sieht | beiBt | friBt

<ARTIKEL> = der | die | das

<SUBSTANTIV> = Katze | Maus | Merlin | Tablet

, +i="ist zu lesen als: ,wird ersetzt durch®
» | ist zu lesen als: ,oder"

Bemerkung: In spitzen Klammern eingeschlossene Symbole sind nicht endglltige Zei-
chen, sogenannte Non-Terminalzeichen (Nonterminals); die anderen Zeichen, wie z.
B. “der” oder “Katze” im obigen Beispiel, werden nicht mehr durch andere Zeichen er-
setzt und heiBen daher endgliltige Zeichen, Terminalzeichen (Terminals).

Die Ersetzungsregel , <ARTIKEL> ::= der | die | das " bedeutet, dal das Non-Terminal
+<ARTIKEL>" durch die Terminals ,der" oder ,die" oder ,das" ersetzt werden kann und
auch zu ersetzen ist, denn der endglltige Satz besteht aus lauter Terminals.

Beachte: Mit dem Begriff ,Zeichen" ist hier nicht ein Buchstabe oder eine Ziffer im Sinne
von ,character" (char) gemeint, sondern die Terminalzeichen sind bei einer natiirlichen
Sprache die einzelnen Wérter der Sprache, bei einer Programmiersprache Schliisselwér-
ter (z. B. while, print, if, else etc. in Python) oder Bezeichner. Folglich sind die Sétze,
die geméaB den Syntaxregeln einer die Programmiersprache definierenden Grammatik
gebildet werden kénnen, nichts anderes als die in dieser Sprache formulierten Pro-
grammtexte.

Satze, die gemaB obenstehenden Regeln aufgebaut sind:

“der Merlin beiBt das Tablet”
“"die Maus sieht die Katze"
“"das Katze friBt die Maus”

Die Syntaxregeln missen zur Bildung korrekter Satze eingehalten werden; andererseits
impliziert die Einhaltung der Regeln nicht zwingend, daB ein syntaktisch korrekter Satz
auch semantisch Sinn macht.

DEFINITION:

Wenn A eine endliche Menge von Zeichen ist, erhalt man durch deren Hintereinander-
schreiben Zeichenketten. Die Menge A heil3t auch Alphabet, die Zeichenketten heiBen
Worter Uber dem Alphabet A; das leere Wort, das keine Zeichen enthalt, heiBt «.

Jede Menge von Wodrtern Uber A heiBt eine formale Sprache; ein System von Regeln,
welches entscheidet, ob ein Wort w Gber A zur Sprache gehort, heiBt Grammatik G (oder
Syntax) einer formalen Sprache.

In Python sind

- die Zeichen oder Symbole der formalen Sprache: Schlisselwdrter wie print, if, in-
put, else, elif, return, . . . , Namen

- die Zeichenketten oder Wérter der formalen Sprache: Python-Programme

Eine Grammatik beinhaltet Regeln, mit Hilfe derer entschieden wird, ob ein Wort (also ein
Programm-Text) z. B. ein gliltiges Python-Programm ist. Dieser Vorgang hei3t Syntax-
Analyse; letztere erledigt ein Parser, der Bestandteil jedes Compilers und jedes Interpre-
ters ist. Ein syntaktisch korrekter Programm-Text ist nicht hinreichend, daB3 das Pro-
gramm auch etwas “Vernlnftiges” leistet; die Bedeutung eines Programm-Textes (oder
eines Textes einer natiirlichen Sprache) wird mit dem Begriff "Semantik” erfal3t.

Wir unterscheiden bei einer formalen Sprache terminale (“endglltige”) und nicht-
terminale (“nicht endglltige”) Zeichen oder Symbole.

DEFINITION:
Eine Satzgliederungsgrammatik G ist durch folgende Bestandteile gegeben:

(1) eine endliche Menge T; ihre Elemente heiBen Terminalzeichen oder Terminals.

(2) eine endliche Menge N; ihre Elemente heiBen nicht-terminale Zeichen oder Non-
Terminals; in dieser Menge N ist ein Startzeichen S ausgezeichnet.

(3) endlich viele Ersetzungsregeln, genannt Produktionen P.

Die von der Grammatik G bestimmte formale Sprache L(G) besteht aus allen Wértern
(bzw. Zeichenketten, Sdtzen, Programmtexten) Gber T, die - ausgehend vom Startzei-
chen S - durch endlich viele Anwendungen der Produktionen erzeugt werden kénnen.

Somit ist eine Grammatik G durch das Quadrupel (T, N, P, S) bestimmt.

Beispiel einer einfachen formalen Sprache:

Das Non-Terminal S sei Startzeichen, a, b seien terminale Symbole.
Ersetzungsregeln P der Grammatik G:

(1) S::=a

(2) S::=aSa

(3) S::=Sb
Bemerkung:

Die in der BNF-Notation fiir Nonterminals vorgesehenen spitzen Klammern wurden hier weggelassen.

Zeige jeweils mittels einer Linksableitung und eines Syntaxbaums, daB die Wérter

a)aaa, b)aaba, c)abbb, d)aababb
zur Sprache L(G) gehdren.

Beachte:

Linksableitung bedeutet, daB3 jeweils das am weitesten links stehende Nonterminal-
Zeichen ersetzt wird.

Solange noch ein S vorkommt, muB3 S ersetzt werden, bis das entstandene Wort aus
lauter Terminal-Zeichen besteht.

Linksableitungen (ausgehend vom Startsymbol S; ,top-down"):

a) S—2535aSa —>aaa

b) S—25aSa —>aSba — > aaba

c) S—5sSb —25>Sbb —>Sbbb — > abbb

d) Ss—5ssb —»>Sbb —~»aSabb ——»>aSbabb — > aababb

Syntaxbaum zu d):

a a a b b

Das Wort a a b a b b 1aBt sich auf das Startsymbol S zuriickfiihren (,bottom-up").

REGULARE SPRACHEN (TyP 3)

DEFINITION:

Eine Grammatik G heiBt reguldr, wenn alle Produktionen von der Form
(R) A ::= aB , A = a (Rechtslinearitat)

sind,

oder wenn alle Produktionen die Form

(L) A ::= Ba , A = a (Linkslinearitat)
haben.
Die zugehorige formale Sprache L(G) heiBt regular.

Wir beschrdanken uns im folgenden auf linkslineare Grammatiken, was keine Einschrén-
kung darstellt; eine linksreguldre Grammatik nennen wir auch Grammatik vom
Typ 3, die zugehérige reguldre Sprache hei3t vom Typ 3.

A\

Vereinbarung: Im Folgenden schreiben wir statt , ::= auch , —» % .

DEFINITION:

Ein endlicher Automat (Akzeptor) ist bestimmt durch

- eine nichtleere, endliche Menge Z von Zustanden,

- eine nichtleere, endliche Menge E von Eingabesymbolen (Eingabealphabet),

- eine Uberfiihrungsfunktion f : Z x E — Z, die jedem Paar aus aktuellem Zustand und
Eingabe eindeutig einen Folgezustand zuordnet,

- einen Anfangszustand zo aus der Menge Z,

- mindestens einen Endzustand zg aus der Menge Z.

Wir verdeutlichen einen endlichen Automaten durch einen Graphen: Fir jedem Zustand
aus Z zeichnen wir einen Knoten. Von den Knoten gehen gerichtete Kanten aus, wobei
eine Kante mit dem jeweiligen Eingabesymbol aus der Menge E beschriftet wird. Eine
Kante endet bei demjenigen Knoten (Zustand), in den der Automat nach Lesen des Ein-
gabesymbols libergeht.

Es gilt folgender
SATz: Ein endlicher Automat erkennt eine Sprache genau dann, wenn sie regular ist.

Der strenge Beweis dieses Satzes ist schwierig; flr linkslineare Grammatiken fihren wir
konstruktiv eine Plausibilitéatsbetrachtung durch:

(1) Jedem Element der Menge N der Nonterminals einer Sprache ist ein Zustand (Kno-
ten) des endlichen Automaten zugeordnet; Ausnahme: dem Anfangszustand ent-
spricht kein Nonterminalzeichen. Das Nonterminal S (Startzeichen) entspricht dem
Endzustand.

(2) Einer Produktion B — Ab entspricht eine gerichtete Kante mit der Bewertung b
(b € T) vom Knoten A (Zustand A) zum Knoten B (Zustand B).

e @2
®

S —» Ab =3

(3) Einer Produktion B — a entspricht eine gerichtete Kante vom Anfangszustand zum
Knoten B (Zustand B) mit der Bewertung a, a € T. Auf den Anfangszustand dirfen
keine Kanten hinfiihren.

SO

Ein Wort w einer Sprache L(G) wird genau dann erkannt, wenn, ausgehend vom An-
fangszustand, das Wort vollstandig gelesen werden kann und der Automat in einen End-
zustand gerat.

Um den Zusammenhang zwischen einer regularen Sprache und einem endlichen Auto-
mat, der diese Sprache erkennt, zu verdeutlichen, betrachten wir folgende durch das
Quadrupel (N, T, P, S) gegebene Grammatik G vom Typ 3:

G=(N,T,P,S) mit

T:={a, b} (Eingabealphabet des endlichen Automaten)
N :={A, B, S} (Menge der Zustande mit S = Startzeichen = Endzustand)

Produktionen P:

(1) A —> alAa
(2) B - b]|Ab
(3) S — Ba

Der als Graph konzipierte endliche Automat DFA (,,deterministic finite acceptor"), der zu
dieser Grammatik G gehort:

d

Endzustand

Anfangszustand

Zu dieser Grammatik G gehort offensichtlich die Sprache L(G):

L(G) = {ba, aba, aaba, aaaba, aaaaba, aaaaaba, >
= {w | w=a"bamitn e Ny} (lies: ,die Menge aller Wérter w, fiir die gilt: w = a"ba")

Linksableitung fir das Wort aaaaba (,top-down”):
S - Ba » Aba » Aaba —» Aaaba —» Aaaaba — aaaaaba

Syntaxbaum fiir das Wort aaba (,,bottom-up"):

B

i
7

Ein Beispiel fir eine Sprache L, die nicht regular ist und folglich von einem endlichen Au-
tomaten nicht erkannt wird:

Eingabe-Alphabet = T := {a, b}
L={w]|w=a"b" mitn e N} = {ab, aabb, aaabbb, aaaabbbb, >

DaB wir gerade diese Sprache betrachten, hat folgenden Grund:

Interpretiert man a als 6ffnende, b als schlieBende Klammer, so stellt L die Menge der
Klammerstrukturen beliebiger Tiefe dar. Solche Klammern treten nicht nur bei arithmeti-
schen Ausdriicken auf, sondern auch bei allen blockorientierten Sprachen wie C++, Pas-
cal, Java oder Python; in Pascal erfolgt die Klammerung eines Blocks mit begin und end,
in Java oder C++ mit geschweiften Klammern { und 3}, in Python wird ein Anwei-
sungsblock durch Einriicken gekennzeichnet.

Versuch, ein Regelsystem fiir eine die Sprache L beschreibende regulare Grammatik zu
finden:

N:={A, S}

Produktionen P:

(1) S - Sb | Ab

(2) A > Aa| a

Aufgabe:

a) Konstruiere den endlichen Automat Au, der zu dieser Grammatik gehort.

b) Zeige, daB auch die “falschen” Wérter a"b™ mit nzm erkannt werden.

c) Gib ein Regelsystem (Produktionen) an, so daB die Sprache L erkannt wird. (Diese
Sprache ist nicht reguldr, sondern heiBt contextfrei oder vom Typ 2.)

Lexikalische Analyse von Namen (Bezeichner, identifier)
Gegeben ist folgende Grammatik G = (N, T, P, S) mit

T:= {a,b,...,2,AB, ..., 2 _.,0,1,....,9}
N := { <name>, <buchstabe>, <ziffer> } ; Startzeichen: S = <name>

Produktionen P:

(1) <name>
(2) <buchstabe>
(3) <ziffer>

<buchstabe> | <name> <buchstabe> | <name> <ziffer>
alblc]...... lz]|_|A|IB|C]|]...... | Z
0]1]12|31]14]15161718]9

Bemerkung: In Python wie in anderen Programmiersprachen sind Schliisselwérter oder reservierte
Worter (z. B. except, if, elif, else,) als Bezeichner unzuldssig.

Aufgabe:

a) Zeige: Die Grammatik G 1aBt sich als linkslineare Grammatik vom Typ 3 formulieren.

b) Zeichne den Graph des zu dieser Grammatik gehérenden endlichen Automaten, der
Identifier erkennt.

c) Zeige, daB die Zeichenkette a3Xyz ein glltiger Bezeichner, also ein Wort der von der
Grammatik G erzeugten Sprache L(G) ist, indem diese Zeichenkette (Programmtext
oder hier: Teil eines Programmtextes) solange reduziert wird, bis die gesamte Zei-
chenkette auf das Startsymbol S zurlckgefiihrt wurde (Syntaxbaum!).

d) Formuliere die Linksableitung fiir das Wort a3Xyz .

Losungen:
ZuU a):

Fir das Nonterminal <name>, welches auch Startzeichen ist, schreiben wir S; dann
[aBt sich die Grammatik G = (N, T, P, S), welche Bezeichner in der Programmiersprache
Python erzeugt, als linkslineare Grammatik formulieren:

T :={ab,¢c...,z,_,ABC ...,2Z20,1,2,3,....,9}
N := {S} mit S = Startsymbol
Produktionen P:
(1) s - albl... |lz]|]_|A|B|]...|Z
(2) S > Sa|Sb]|....|Sz|S_|SA|SB]|...|SZ
(3) S > S0|S1[S2]....]89S9
Zu b):
Zu dieser Grammatik G gehért folgender DFA:
= EERSry - N Y ERSNUNG b
ajl-..lzl_lAl--.1Z

@ .

D|]1|2|3|4|5|6|7] 8|89

ZU C):
Syntaxbaum g

a 3 W y 7z

zu d): Linksableitung fir das Wort a3Xyz (,top-down"):

(2) &) () (3) (1)
S > Sz —> Syz — SXyz — S3Xyz — a3Xyz

Lokale Teilbereiche (hier: Syntax von Bezeichnern) einer Programmiersprache kénnen
durch eine regulare Grammatik (Grammatik vom Typ 3) beschrieben werden.

Paritatsbit

Eine Folge von Bits wird um ein ,Paritatsbit™ erganzt, so daB die Anzahl der mit 1 beleg-
ten Bits (einschlieBlich Paritatsbit) entweder gerade (,gerade Paritat") oder ungerade
(,ungerade Paritat") ist.

Wir betrachten die Menge T™ aller Wérter, die sich tiber dem Alphabet T = {0;1} bilden
lassen. Samtliche Daten werden als bindre Worte Gber T auf einem Speichermedium ab-
gelegt oder zwischen Komponenten eines Netzwerks transportiert.

Beispiel: Die 128 Zeichen der ASCII-Tabelle werden mit jeweils 7 Bit codiert, so da3 das
Paritdtsbit als 8. Bit die Bitfolge zu einem aus 8 Bit bestehenden Byte ergédnzen kann.

Um Fehler bei der Datenlbertragung oder —speicherung zu erkennen, wird z. B. an jedes
Wort ein ,Paritatsbit™ angehangt, so daB die Anzahl der Einsen im resultierenden Wort w
gerade ist. Ein Wort w besteht also den Paritats-Check, falls es zur Sprache

L(G) = {w e T" | die Anzahl der Einsen in w ist gerade}
gehort.
a) Konstruiere einen DFA, der L(G) erkennt.
b) Gib die Syntaxregeln (Produktionen P) an.
C) Zeige, daB es fiir das Wort 01101100 einen korrekten Syntaxbaum gibt.

d) Zeige: Flr das Wort 01011 1aBt sich weder eine Linksableitung noch ein korrekter Syn-
taxbaum angeben.

L6sungen:

ZuU a):
Menge der Terminalzeichen: T=4{0;1}
Menge der Nonterminalzeichen: N = {A; S} mit S als Startzeichen

DFA:
1

Cal30)

Zu b):
Produktionen P:
(1) A>1

(2) A—> A0

(3) A>sS1

(4) S>>0

(5) S-S0

(6) S—> A1

ZU C): S
i
S
E
S
P
A
S A
/
S
T
A
L
S
0 at 1 0 1 1 0] 0]
zu d):
Linksableitung:
6 3 5 6 2

S »> Al » S11 » S011 —» A1011 —» A01011 — ?

Syntaxbaum:

0 1 0 1 1

Da das Wort 01011 sich auf das Startsymbol S nicht reduzieren 1&Bt, gehért 01011 nicht
zur Sprache L(G) mit G = (N, T, P, S).

Wir oben (S. 6) bereits gezeigt, 1aBt sich die Sprache
L(G) = {ab, aabb, aaabbb,} ={w |w=2a"b" mitneN3} mitT = {a, b}

nicht durch eine reguldare Grammatik erzeugen; wenn man allerdings allgemeinere als
regulare Produktionsregeln zulaBt, gelingt die Formulierung einer Grammatik G, zu der
L(G) gehort:
T=4{a, b}; N={S}, S = Startsymbol
P: (1)S—>ab

(2) S —» aShb

Ubung: Gib eine Linksableitung und einen Syntaxbaum fiir das Wort aaabbb an!

10

KONTEXTFREIE GRAMMATIKEN UND KONTEXTFREIE SPRACHEN
(Typ 2)

Context free grammars (CFG) and context free languages (CFL)

Zur Grammatik G = (T, N, P, S) mit Eingabealphabet T = {a; b; c} und N = {A; S}
(S=Startsymbol) sei die Sprache

L(G) :={w] w=2a"¢h",n=0,1,2,...} ={c acb, aacbb, aaacbbb,)3

gegeben. Falls man versucht, zu dieser Sprache L(G) ein linksreguldare Grammatik mit
den Produktionen P

(1) S—>Sb|Ac|c
(2) A—>Aa]a

zu formulieren (siehe auch Seite 6), erkennt man, daB3 der zugehérige DFA zwar die
Lrichtigen™ Wérter ¢, acb, aacbb, aaacbbb, erkennt und daB es korrekte Syntax-
baume fir diese Worter gibt, daB allerdings ebenso die ,falschen™ Woérter ac, acbb,
aaaacbb, . . . (also a"cb™ mit n=m) erkannt werden; denn zum Abarbeiten der a bedarf
es der rekursiven Regel A — Aa, zum Abarbeiten der b der rekursiven Regel S — Sb. Und
der DFA ermdglicht nicht zu zéhlen und festzuhalten, wie oft diese rekursiven Regeln je-
weils angewandt wurden!

Bemerkung: Eine Produktionsregel heiBt rekursiv, wenn ein Nonterminal auf der linken Seite der
Regel auch auf deren rechter Seite vorkommt.

Mehrfach geschachtelte Klammerungen, wie durch L(G) = {w | w = a"cb" } beschrie-
ben, treten nicht nur in arithmetischen Termen, sondern auch als Programmstruktur in
allen blockorientierten Sprachen wie Python, Pascal, Java, C++ usw. auf. Um die oben

formulierte Sprache L(G) zu erkennen, muB man das Regelsystem erweitern.

Vereinbarung:
Im Folgenden verstehen wir unter dem Symbol @ eine beliebige Aneinanderreihung von
Terminals oder Nonterminals, z. B. ® = AbaSa.

DEFINITION:
Eine zur Grammatik G gehorende Sprache L(G) heiBt kontextfrei (oder kontext-
unabhadngig, engl.: contextfree) genau dann, wenn alle Produktionen die Form

A > o (andere Schreibweise: A:=0)

mit A € N haben.

Bemerkungen:

Eine kontextfreie Grammatik nennen wir auch Grammatik vom Typ 2, die zugehérige
kontextfreie Sprache heiBt vom Typ 2.

Eine Produktion aAb ::= aBaSs ist dagegen nicht kontextfrei in dem Sinne, daB man das
Nonterminal A nicht einfach durch aBaS ersetzen darf, sondern nur dann, wenn es im
Zusammenhang (im Kontext) mit einem voranstehenden a und einem folgenden b vor-
kommt; hier ist die Zeichenkette aAb durch aBaS zu ersetzen. Bei kontextfreien Spra-
chen steht das auf der linken Seite einer Produktion stehende Nonterminal in keinem
Kontext anderer Zeichen.

Teilbereiche (z. B. Identifier, Paritdts-Check) einer Programmiersprache lassen sich durch
eine reguldre Grammatik (siehe Seiten 6 - 9) beschreiben; insgesamt ist Python mindes-
tens eine kontextfreie Programmiersprache, also vom Typ 2.

Natiirliche Sprachen sind nicht kontextunabhédngig (daB man den Satz “die Maus jagt die
Katze” bilden konnte, liegt daran, daB3 die Produktionen kontextfrei definiert waren, sol-
che semantisch unsinnigen Sétze kann man dadurch ausschlieBen, indem die Produktio-
nen kontextabhdngig formuliert werden.).

11

DEFINITION:
Zwei Grammatiken G und G’ heiBen dquivalent genau dann, wenn gilt:

L(G) = L(G")

Beispiel:
Definiere die Grammatiken G und G’ wie folgt:

G = (T, N, P, S) mit Eingabealphabet T = {a; b; c}, N = {R; S}, S=Startsymbol und
den Produktionen P

(1) S::=c
(2) S::=Rb
(3) R::=as
G'=(T,N,P,S)mitT ={a; b; c}, N = {S}, S=Startsymbol und den Produktionen P
(1) S::=c
(2) S::=aSb (zentralrekursive Regel)

G und G’ sind aquivalent, denn:
L(G) =L(G)={w]| w=a"ch",n=0,1,2,...7%}

Beispiel: w = aacbb

Syntaxbaum gemdB Grammatik G: Syntaxbaum gemaB Grammatik G’:

e

s

\

s

|

R

S

|

a a =

S
|
S
|
S
|
c

b b a a b
Offensichtlich lassen sich die Wérter a"cb” sowohl in G als auch in G” auf das Startsymbol
S reduzieren, indem man obenstehende Syntaxbdume jeweils geeignet erweitert.

DEFINITION:

Eine Grammatik G heiBt strukturell mehrdeutig (structurally ambiguous) genau
dann, wenn die zugehorige Sprache L(G) Worter (die Woérter einer Program-
miersprache sind die Quelltexte!) enthalt, fiir die es strukturell unterschiedli-
che Syntaxbdume gibt.

Hinweis:

Von lexikalischer Mehrdeutigkeit spricht man, wenn ein Terminal (in einer natiirlichen
Sprache: ein Wort) mehrere Bedeutungen besitzt; Beispiel: In dem Satz

»Das SchloB wurde im 16. Jahrhundert gebaut" kann mit dem Wort ,SchloB" ein Gebédu-
de oder eine SchlieBvorrichtung gemeint sein.

Weitere Beispiele fiir lexikalische Mehrdeutigkeit in natiirlichen Sprachen:
"Der Gefangene floh” < “"Der gefangene Floh”
“time flies like an arrow” < “fruit flies like a banana”.

12

Bemerkungen:

- Es gibt kontextfreie Sprachen (CFLs; Sprachen vom Typ 2), die inharent mehrdeutig
(inherently ambiguous) sind, d. h. jede Grammatik fiir diese Sprache ist mehrdeutig.
Eine kontextfreie Sprache heil3t eindeutig, sobald sich eine eindeutige Grammatik an-
geben 1aBt, die diese Sprache erzeugt.

- Eine regulare Sprache (Sprache vom Typ 3) kann nicht inharent mehrdeutig sein, da
sich stets eine eindeutige Grammatik angeben |aBt, die diese Sprache erzeugt.

- Die Frage, ob zwei Grammatiken dieselbe Sprache erzeugen und damit aquivalent
sind, ist allgemein nicht entscheidbar.

- Es ist grundsatzlich nicht méglich, fir eine gegebene kontextfreie Grammatik mit ei-
nem allgemeinen Algorithmus zu entscheiden, ob sie eindeutig oder mehrdeutig ist.

- Gleichwohl gelingt es in der Praxis in aller Regel, eine eindeutige kontextfreie Gram-
matik zu formulieren (indem man z. B. die mdglichen Falle durchspielt).

- Syntaxbdume, bei denen das Startzeichen als Wurzel, die Nonterminals als innere
Knoten und die Terminals als Endknoten (Blatter) auftreten, lassen sich nur bei Typ-3
oder Typ-2-Sprachen sinnvoll erstellen, also bei Sprachen, bei denen die ,linke" Seite
jeder Produktionsregel aus genau einem Nonterminal-Zeichen besteht.

Beispiele strukturell mehrdeutiger Grammatiken

Beispiel 1

Gegeben ist die Sprache L(G) zur Grammatik G = (T, N, S, P) mit
T={+I*I(I)Ialblcl"'lz}
N={S,V} S = Startzeichen
Produktionen P:
(1) S » V]| (S)]|] S+S]| s*s
2) V. - al|bjc]. . .|z

Zeige:

a) (a+b) *celL(G) (Linksableitung, Syntaxbaum)
b) Fir das Wort a + b * c lassen sich Syntaxbaume auf zwei strukturell verschiedene
Arten angeben! Erlautere die Konsequenzen flir die Abfolge der Rechenschritte.

Lésung zu b):

1. Lésung:
Syntaxbaum: S
/ S

5 5]
| | |
A" A\ A"
I | |
a + b * C

13

Linksableitung:

S »>S+S - V+S > a+S »> a+S*S 5 a+V*S 5 a+b*Ss
- a+b*V - a+b*c

2. Lésung:

Syntaxbaum:

SN

w
w
w

<
< —
ﬁ_{:_

Linksableitung:

S - S*S 5 S+S*S 5 V+S*S 5 a+S*S 5 a+V*¥S 5> a+b*SsS
- a+b*V - a+b*c

Der Term a + b * ¢ wird gemaB dem ersten Syntaxbaum als Summe mit den Sum-
manden a und b * ¢, gemaB dem zweiten Syntaxbaum als Produkt mit der Summe
a + b als ersten Faktor und c als zweiten Faktor aufgefaBt.

Da sich zu dem Wort a + b * ¢ zwei strukturell verschiedene Syntaxbdaume in der Gram-
matik G angeben lassen, ist die Grammatik G strukturell mehrdeutig.

Beispiel 2 ,dangling else"™ - ambiguity

Gegeben: Grammatik G = (T, N, P, S) mit
- T := {if else, s1,s2,cl,c2}
- N:={E S} mit S = Startsymbol
- Produktionsregeln P:

(1) s - if ES

(2) S > if ES else S

(3) S > sl]s2

(4 E > cl]|c2

Bedeutung der Terminals:

s1, s2 (statementl, statement2) stehen jeweils fiir Anweisungen oder Anweisungs-
blécke

cl, c2 (conditionl, condition2) stehen jeweils fiir Boolesche Terme

Zeige:
Das Wort
if cl if c2 sl else s2

[aBt sich auf zwei strukturell verschiedene Weisen auf das Startsymbol S reduzieren.

14

/ J

s1 else 52

Syntaxbaum 1:

i

Formulierung in Python:

if cl:
if c2:
sl
else:
s2
Syntaxbaum 2: o
S
E E S S
| | | |
§if el FF c2 51 else 52

Formulierung in Python:

if cl:
if c2:
sl
else:
s2

Moglichkeiten, um der Mehrdeutigkeit zu begegnen:
- Der else-Zweig bezieht sich immer auf das ndchst voranstehende if.

- Kennzeichnung von Anweisungsblécken durch entsprechende Strukturierung des
Quelltextes;

in Python: durch Einriicken;
in Pascal: mit den Schliisselwértern begin und end;
in C++, Java: mit { und } .

15

Beispiel 3 Mehrdeutigkeit bei einer Grammatik fiir eine natiirliche Sprache
Gegeben ist die Sprache L(G) zur Grammatik G = (T, N, Satz, P) mit

T = {mit, in, auf, Hans, Frau, Fernglas, Park, sieht, geht, der, die, das, einem?}
N = {Satz, NP, VP, PP, N, A, V, P} mit Satz=Startsymbol; NP <> Nominalphrase usw.

Produktionen P:
(1) Satz - NP VP

(2) NP - NPPP| AN | N

(3) VP - VP PP | V NP | V

(4) PP - P NP

(5) P — mit | in | auf

(6) N — Hans | Frau | Fernglas | Park
(7) V — sieht | geht

(8) A — der | die | das | einem

Zu dem Satz

~Hans sieht die Frau mit einem Fernglas
lassen sich zwei strukturell verschiedene Syntaxbdaume angeben:

) smzxxx
VP
,-’f \\NF'
KJ ¢

Vd / f’f \PP

/ / / f;" ey
NP /NP / ;Ni
| 2 / \ / F X
N v A N P A N

(Hans) (sieht) (die Frau) {mit ginem Femglas)

2) Satz
/
Fi VP

NP VP PP
/

e
/ !-qp f/ ;NP
/ LN .
T T
(Hans) (sieht die Frau) (mit ginem Femaqglas)

Beachte: Die Klammern sind nicht Bestandteil des zu analysierenden Satzes, sondern
dienen dazu, die unterschiedliche Semantik zu verdeutlichen.

16

Dagegen erweist die folgende Grammatik sich als eindeutig:

Gegeben ist die Grammatik G = (T, N, P, S), bestehend aus der Menge T der Termi-
nalzeichen, der Menge N der Nonterminalzeichen, dem Element S € N als Startzei-
chen und der Menge P der Produktionen:

T:={a, b, p, q, if, then, else}

N:={S,S;, S, B, T}

Produktionen P:

(1) s > S 1S

(2) Si —» T | ifBthenS;else S,

(3) S, —» T | ifBthenS | ifBthenS;elseS,;

4B > plaq

B) T - a|6b

Man Uberzeuge sich: Das Wort if p then if g then a else b
besitzt in dieser Grammatik nur einen einzigen Syntaxbaum!

Bedeutung der Terminals:
p, q bezeichnen Boolesche Terme;
a, b stehen fiir Anweisungen oder Anweisungsblocke.

Wir betrachten im Folgenden Grammatiken G; und G,, deren Sprachen L(G;) und L(G3)
aus arithmetischen Termen bestehen und die wegen L(G;) = L(G,) aquivalent sind:

Gegeben ist die Menge der Terminalzeichen T ={a, b, ¢, d, (,), +, *}.
Wir definieren die folgenden Grammatiken G; und G»:

G; =(T,N,P,S) mit N=<{V,R, Q, S}, S=Startsymbol
Produktionen P:

(1) al|b|cl|d
(2)
(3)
(4)
(5)
(6)
(7)

G, = (T, N, P,S) mit N={V, S}, S=Startsymbol
Produktionen P:

Vo OTOOo<
R R N A

(1) V. > al|blc]|d
2) S > V

3) S —» V*S | S*sS
4 S > V+S | S+S
(5 S — (S)

a) Zeige: Das Wort a+ b * (¢ + d) gehért sowohl zur Sprache L(G;) als auch zur
Sprache L(G,), indem man bei G; und G, jeweils einen Syntaxbaum und eine
Linksableitung angibt.

b) Analysiere das Wort a * b + a * ¢ sowohl nach G; als auch nach G,
(Linksableitung, Syntaxbaum).
Welche der Grammatiken G; und G, verdient den Vorzug, obwohl sie aquivalent
sind (Begriindung!)?

17
c) Analysiere das Wort a * (b + ¢) sowohl nach G; als auch nach G,.

L6sungen:

a)a) a+b*(c+d) e L(G,)

Syntaxbaum:
S
Q

S
|
(|D_ Q Q

| |
R R R
| | |
I i I
| | |
a + b i d)

Linksableitung:
Beachte: das am ,weitesten links" stehende Nonterminal wird jeweils ersetzt.

S->S5S+Q » Q+Q » R+Q »>I+Q »a+Q - a+Q*R
—- a+R*R > a+I*R »> a+b*R > a+b*(S) »>a+b*(S+Q)
- a+b*(Q+Q) »>a+b*(R+Q) > a+b*(I+Q) > a+b*(c+Q)

- a+b*(c+R) > a+b*(c+1I) > a+b*(c+d)

a)p) a+b*(c+d) e L(Gy)

Syntaxbaum:

18

S
S\

3

S
\S
|
T T T T
| | | |

a - b P (C y d)

Linksableitung:
S »>I+S » a+S »> a+l*S »> a+b*S 5> a+b*(S)> a+b*(I+S)

- a+b*(c+S)> a+b*(c+I)> a+b*(c+d)

b)a) a*b+ a*c e L(G;)

Syntaxbaum:
S
5
|

Q Q
Q Q
| |
R R R R
| | | |
I I I I
| I I |
a * b + a * C

19

Linksableitung:
S>S5S4+Q » Q+Q - Q*R+Q - R*R+Q - I*R+Q » a*R+Q
- a*I+Q - a*b+Q > a*b+Q *R 5> a*b+R*R - a*b+I*R

- a*b+a*R - a*b+a*I - a*b+a*c

b)) a*b+ a*c e L(G,)

Syntaxbaum:
S
S
S
5
|
I I I I
| | I |
a H b + a 2 C

Linksableitung:

S > I*S 5 a*S - a*XI+S > a*b+S —»> a*b+I1I*S

- a*b+a*S -5 a*b+a*I —- a*b+a*c

DerTerm a* b + a*c wirdin der Grammatik G; als Summe, deren Summanden
jeweils die Produkte a * b und a * ¢ sind, verstanden; dagegen faBt die Grammatik
G, den Terma *b + a * ¢ als Produkt mit den Faktoren a und b + a * ¢ aufund
beachtet folglich nicht die allgemeinglltige Vereinbarung , Punkt vor Strich®. Daher ist
die ,kompliziertere® Grammatik G, der ,einfacheren™ Grammatik G, vorzuziehen, obwohl
beide Grammatiken G; und G, dquivalent sind, denn L(G:) = L(G,).

20

c) Syntaxbaume zum Wort a* (b + c)

gemaB Grammatik Gy: gemaB Grammatik Gj:
s S
|
Q

S S
\
/ B I]‘Z
‘S L * (t‘) + C
Q Q‘Q Q
s . .
| \ |
I Iy I
| \ |
a * (b + c)
KONTEXTSENSITIVE GRAMMATIKEN
UND KONTEXTSENSITIVE SPRACHEN
(Tyrp 1)
Riickblick:

Eine Grammatik G und die zugehérige Sprache L(G) heiBen kontextfrei oder
vom Typ 2 genau dann, wenn die linke Seite jeder Produktionsregel aus genau
einem Nonterminal-Symbol und die rechte Seite aus einer beliebigen Aneinander-
reihung von Terminal- und Nonterminal-Symbolen besteht.

Beachte:

Die Syntaxanalyse (,bottom-up") eines zur kontextfreien Sprache L(G) gehd-
renden Wortes w (z. B. arithmetischer Term, Quelltext einer Programmiersprache)
1aBt sich mittels eines Syntaxbaums realisieren, dessen Wurzel das Startsymbol S
ist, dessen innere Knoten aus Nonterminals und dessen Endknoten (,Bldtter") aus
Terminals bestehen.

Somit gehért ein Wort w zur Sprache L(G), wenn es sich unter Asnwendung der
Produktionsregeln auf das Startsymbol S reduzieren 138t.

Folgende Grammatik G sei geben durch das Quadrupel (T; N; S; P):

Menge der Terminalsymbole: T:={a, b, c}
Menge der Nonterminalsymbole: N := {B, C, S} mit S = Startsymbol

21

Produktionen P:

(1) S — aSBC| aBC
(2) CB - BC
(3) aB — ab
(4) bB — bb
(5) bC — bc
(6) cC — cc

Die zu dieser Grammatik G gehdrende Sprache ist
L(G) ={w|w=2a"h"c",n e N} = { abc, aabbcc, aaabbbccc, aaaabbbbcccc, }.

Die Grammatik G ist nicht kontextfrei im Sinne der Definition auf Seite 10; vielmehr ver-
langen die Regeln (2) bis (6), daB die Nonterminals auf der linken Seite nur dann ersetzt
werden kénnen und auch zu ersetzen sind, wenn sie in einem bestimmten Kontext mit
anderen Zeichen (Terminals oder Nonterminals) stehen. Die Ersetzungsregeln (2) bis (6)
sind folglich kontextsensitiv.

Hinweis:
Zu dieser Sprache L(G) 138t sich keine kontextfreie Grammatik (Grammatik vom Typ 2)
angeben. Die oben definierte Grammatik G ist kontextsensitiv (Grammatik vom Typ 1).

Auf die exakte Definition einer Typ-1- und einer Typ-0-Grammatik verzichten wir an die-
ser Stelle.

Aufgabe: Verifiziere jeweils durch eine Linksableitung, daB3 die Worte

a) abc
b) aabbcc
c) aaabbbccc

zu L(G) gehoéren.

Lésung zu ¢):

1 1 2 2

1
S —» aSBC — aaSBCBC — aaaBCBCBC — aaaBBCCBC — aaaBBCBCC

2 3 4 4 5

— aaaBBBCCC — aaabBBCCC —» aaabbBCCC — aaabbbCCC — aaabbbcCC

6 6
— aaabbbccC — aaabbbccc

Es erhebt sich die Frage, von welchem Typ natlirliche Sprachen sind. Folgende Beispiele
erhellen, daB neben héheren Programmiersprachen (Pascal, C++, Python, Java) auch
natilrliche Sprachen mindestens kontextfrei, also mindestens vom Typ 2 sind:

22

Beispiel 1:

Ein Schiiler, der die Qualifikation Block I, fiir die 35 Kurse, von denen héchstens sieben
mit weniger als 5 Punkten bewertet wurden, geméaB §10 (1)-(8) einzubringen sind, er-
reicht hat, wird zur mindlichen Prifung zugelassen.

Die Struktur dieses Satzes wird durch eine geeignete Formatierung des Textes deutlich:

Ein Schiiler, wird zur mdl. Priifung zugelassen.
der die Qualifikation Block I, erreicht hat,
fiir die 35 Kurse, gemdB $§10(1)-(8) einzubringen sind,
von denen héchstens sieben mit weniger als 5 Punkten bewertet wurden,

Damit hat dieser Satz eine Syntax, die dem Regelsystem der Grammatik auf Seite 9 un-
ten bzw. Seite 10 entspricht (hier: 4 mal ,Klammer auf", gefolgt von genau 4 mal ,Klam-
mer zu") und der folglich eine kontextfreie Grammatik (Typ 2) zugrunde liegt.

Bemerkung:
DaB ein mit 0 Punkten bewerteter Kurs nicht eingebracht werden kann, wird in obenstehendem
Beispielsatz nicht erwdhnt, ergibt sich aber aus § 10 (8) AbiPrO, auf den der Satz Bezug nimmt.

Beispiel 2:
Das Mé&dchen, das den Hund, der die Katze, die schnurrte, bil3, sah, weinte.

Die Satze aus diesen Beispielen sind syntaktisch korrekt gebildet; dennoch werden in der
Praxis solche vierfachen Verschachtelungen gemieden, dreifache kommen kaum vor,
zweifache dagegen sind durchaus Ublich:

Dreifache Verschachtelung:

Der Schiiler, der die Qualifikation Block I, fiir die er mindestens 200 Punkte bendtigt,
erreicht hat, wird zur miindlichen Priifung zugelassen.

Zweifache Verschachtelung:

Der Schiiler, der die Qualifikation Block I erreicht hat, wird zur mdndlichen Priifung zuge-
lassen.

Wenn man solcher eher komplexen grammatikalischen Strukturen vom Typ 2 nicht
machtig ist, wird man den Inhalt des Beispiels 2 auch folgendermaBen formulieren koén-
nen:

Das Madchen weinte, das den Hund sah, der die schnurrende Katze bif.

Seit NoAM CHOMSKY (* 07.12.1928; o. Professor am MIT (Massachusetts Institute of
Technology)) grundlegende Arbeiten zur Klassifizierung formaler Sprachen (Typ 3 « re-
gular, Typ 2 < kontextfrei, Typ 1 < kontextsensitiv, Typ 0 « rekursiv-aufzahlbar) ver-
faBt hat, ist man der Auffassung, daB natirliche Sprachen mindestens die Komplexitat
einer kontextsensitiven Sprache aufweisen. Allerdings ist zu vermuten, daB kontextsensi-
tive grammatikalische Konstruktionen in der Praxis eher gemieden werden, was sogar flr
kontextfreie Konstruktionen gilt (siehe obige Beispiele).

23

Hierarchie der Grammatiken nach Noam Chomsky:

-~

Typ-0 Gram matiken\

7

Typ-1 Grammatiken \

Typ-2 Grammatiken

\\\\

Typ-3 Grammatiken

\

7

N

/

ok A

Typ-3 Grammatiken bilden eine echte Teilmenge der Typ-2 Grammatiken usw.

Karl-Heinz Selbach

VI1/2024

