
Eigenschaften der rekursiv definierten Fibonacci-Folge n=0{f(n)}  
 
(1) f(0)  =  0  ,       f(1) = 1 
(2) f(n)  =  f(n1) + f(n2)          falls n > 1 
 
1.  Die Folge {f(n)} ist streng monoton wachsend für n > 1. 

 Beweis:  
 f(n+1) – f(n) =  f(n-1)  >  0    falls n > 1 
 
2. Behauptung:  f(n) < 2n-1 = ½  2n     falls n > 1 
 

 Beweis: f(n) = f(n-1) + f(n-2)  < 2  f(n-1)     wegen der Monotonie 
   < 2  2  f(n2)  = 22  f(n2) 
   < 23  f(n3) 
   . . . . . . . . . . . 
   < 2n-1  f(n (n-1)) = 2n-1  f(1) = 2n-1 
 
3. Behauptung:  f(n) > ½  (2)n   falls n > 2 
 

 Beweis: n sei gerade mit n = 2m,  m > 1 
 

  f(2m)  = f(2m1) + f(2m2)   
   > 2  f(2m2)   =  21  f(2(m1))   wegen der Monotonie 
   > 2  2  f(2m4) = 22  f(2(m2))    
   > 23  f(2(m3))    
   . . . . . . . . . . . 
   > 2m-1  f(2(m(m-1))) = 2m1  f(2) =  2m1  
   

  mit m = n/2 folgt: 
 

  f(n) >  2n/2  1 =  ½  2n/2  =  ½  (2)n   
 
 
4. Folglich erhalten wir für f(n) die Abschätzung 
 
  ½  (2)n   <  f(n)  <   ½  2n         falls n > 2 
     
 Die Fibonacci-Folge wächst exponentiell mit n. 
 
 
5. Das exponentielle Wachstum läßt sich auch an der für die Fibonacci-Folge 

geltenden  Formel von Moivre-Binet ablesen: 
 
  
 f(n) =   
 
 
 
 Für große Werte von n kann man den Subtrahend gegenüber dem Minuend 

vernachlässigen. 
 
 
6. Berechnet man die Fibonacci-Folge mit der rekursiv formulierten Funktion fib, 

erhält man für die Anzahl z(n) der Aufrufe von fib: 
 

 z(0) = z(1) = 1 
 

 z(n) = 1 + z(n-1) + z(n-2) ,  n > 1 
 

 Wegen z(n)  f(n) wächst auch z(n) exponentiell mit n. 


