Eigenschaften der rekursiv definierten Fibonacci-Folge {f(n)}_,

(1) (0

)y=0, f(1)=1
(2) f(n) =

f(n-1) + f(n-2) fallsn > 1

1. Die Folge {f(n)} ist streng monoton wachsend fiir n > 1.

Beweis:
f(n+1) - f(n) = f(n-1) > 0 fallsn>1

2. Behauptung: f(n) < 2" =1,.2" fallsn>1

Beweis: f(n) = f(n-1) + f(n-2) < 2-f(n-1) wegen der Monotonie
<2.2-f(n-2) =2?.f(n-2)
< 2°.f(n-3)

< 2" f(n-(n-1)) = 2" . f(1) = 2!
3. Behauptung: f(n) > %2 - (¥2)" fallsn > 2
Beweis: n sei gerade mitn =2m, m>1

f(2m) = f(2m-1) + f(2m-2)
>2.f(2m-2) = 2'.f(2(m-1)) wegen der Monotonie
> 2.2 f(2m-4) = 2% . f(2(m-2))
> 2°. f(2(m-3))

> 2™ f(2(m=(m-1))) = 2™ . f(2) = 2™
mit m = n/2 folgt:
f(n) > 2"27"1= 15.2"2 = 1. (42)"

4. Folglich erhalten wir fiir f(n) die Abschatzung
. (V2)" < f(n) < % .2" falls n > 2

Die Fibonacci-Folge wachst exponentiell mit n.

5. Das exponentielle Wachstum [aBt sich auch an der fir die Fibonacci-Folge
geltenden Formel von Moivre-Binet ablesen:

o (55 (55)

Fir groBe Werte von n kann man den Subtrahend gegenliber dem Minuend
vernachlassigen.

6. Berechnet man die Fibonacci-Folge mit der rekursiv formulierten Funktion fib,

erhdlt man fir die Anzahl z(n) der Aufrufe von fib:
z(0)=2z(1)=1
z(n) =1+ z(n-1) + z(n-2) , n>1

Wegen z(n) > f(n) wachst auch z(n) exponentiell mit n.



