Binare Suche Informatik 12 Februar 2024
Gegeben: Ein aufsteigend sortiertes Array a mit den n Komponenten a[0],, a[n-1]

Aufgabe: Entscheide, ob ein flir die Variable value eingegebener Suchwert mit dem Wert einer Komponente des
Arrays a Ubereinstimmt.

Wir durchlaufen den Algorithmus schrittweise anhand des folgenden Beispiels.

Gegeben: Array a mit den Komponenten a[0],, a[9]; n =len(a) = 10
value = 13

Die rekursiv formulierte Boolesche Funktion binarysearch liefert den Wert True, falls value mit dem Wert
irgendeiner Komponente von a Ubereinstimmt, andernfalls liefert sie den Wert False.

Wir Ubergeben value und die Liste a[0], . . ., a[9]

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

3 4 5 5 7 8 11 13 19 21

der Funktion binarysearch,
welche a[0], . . . , a[9] als lokale Liste array[0], . . . , array[9] fortfUhrt:

array[O] | array [1] | array [2] | array [3] | array [4] | array [5] | array [6] | array [7] | array [8] | array [9]

3 4 5 5 7 8 11 13 19 21

1. Schritt:
Bestimme den mittleren Index middle des Arrays array: middle = len(array)//2 = 10//2 =5

2. Schritt:

midvalue = array[middle] = array[5] = 8

Vergleiche value mit midvalue:

Falls value == midvalue: binarysearch gibt den Wert True zurick; gefunden!

Falls value < midvalue: suche in der Liste array[0], . .., array[4] links von array[5]
Falls value > midvalue: suche in der Liste array[6], . .., array[9] rechts von array[5]

hier: wegen 13 > 8 suche in der Liste array[6], . . ., array[9] .

binarysearch (ibergibt value und die Liste array[6], . . . , array[9]

array[6] array [7] array [8] array [9]

11 13 19 21

der Funktion binarysearch,
welche array [6], . . ., array [9] als lokale Liste array[0], . . . , array[3] fortfuhrt:

array[0] array[1] array[2] array[3]

11 13 19 21

1. Schritt:
Bestimme den mittleren Index middle des Arrays array: middle = len(array)//2 =4//2 = 2

2. Schritt:

midvalue = array[middle] = array[2] = 19

Vergleiche value mit midvalue:

Falls value == midvalue: binarysearch gibt den Wert True zurick; gefunden!

Falls value < midvalue: suche in der Liste array[0], array[1] links von array[2]
Falls value > midvalue: suche in der Liste array[3] rechts von array[2]

hier: wegen 13 < 19 suche in der Liste array[0], . . ., array[1] .

binarysearch (ibergibt value und die Liste array[0], . . ., array[1]

array[0] array[1]

11 13

der Funktion binarysearch,
welche array [0], . . ., array [1] als lokale Liste array[0], . . . , array[1] fortfUhrt:

array[0] array[1]

11 13

1. Schritt:
Bestimme den mittleren Index middle des Arrays array: middle = len(array)//2 = 2//2 =1

2. Schritt:

midvalue = array[middle] = array[1] = 13

Vergleiche value mit midvalue:

Falls value == midvalue: binarysearch gibt den Wert True zurick; gefunden!

Falls value < midvalue: suche in der Liste array[0] links von array[1]
Falls value > midvalue: die Liste [] rechts von array[1] ist leer;
dann gibt binarysearch den Wert False zurlick: nicht gefunden!

Hier: da der Suchwert value und array[middle] tbereinstimmen, hat der Boolesche Term
value == midvalue den Wert True; folglich liefert binarysearch den Wert True: gefunden!

Ware 12 der Suchwert, erhielte man wegen 12<13 im 2. Schritt: suche in der Liste array[0] links von array[1]

binarysearch lbergibt value und die Liste array[0]

array[0]

11

der Funktion binarysearch, welche den Wert False liefert, da array[0]#value und array die Lange 1 hat.
ZusammengefaBt: binarysearch liefert den Wert False, falls

array == [] or (array[0] !'= value and len(array) == 1)

den Wert True annimmt.

Formulierungen der Booleschen Funktion binarysearch in Python:

=f binarysearch(value, array):

array == [] r {array[0] != walue and len{array} == 1}:
midvalue = array[len(array)//2]
value == midwvalue: urn True
valuse < midwvalue: -turn binarysearch(value, arrayl[:len{array)//2])

. binarysearch{value, arrayl[len{array)//2 + 1:])

f binarysearch(value, a}:
1=

- a == [] «c (a2 [0] value and lenf{a) == 1}:
* wvalue =— a[len{al}//2]: [T 11E
value < a[len(a)//2]: return binarysearch(value, al[:len(a)//2])
. binarysearch(value, a[len(a)//2 + 1:1)
Funktionsaufruf zum Suchen von value im sortierten Feld a: binarysearch (value,a)

Mittels einer Zahlvariablen z ermitteln wir die Anzahl der Aufrufe von binarysearch, die Anweisung
print (array) gibt die jeweilige Teilliste aus, auf der binarysearch operiert:

z =0

def binarysearch(array,value):
global =z
z += 1
print (array)
if array == [] or (len(array) == 1 and array[0] !'= value): return False

Komplexitat des Algorithmus binarysearch:

Die Komplexitat zur Laufzeit und damit der Rechenaufwand A(n) wird wesentlich bestimmt durch die Anzahl der

Vergleiche von value mit midvalue, somit durch die Anzahl z der Aufrufe der rekursiv definierten Funktion
binarysearch; o. B. d. A. sei n eine Potenzvon 2,d. h. n = 2" mit k = 0,1, 2 3,4,
Beachte: die maximale Anzahl von Aufrufen (worst case) tritt ein, falls die Suche ergebnislos ist.

k=0 © n=1

RAufrufe binarysearch

k=3 < n=8

gesuchte Zahl: 79

[50 B2 F0s T4 80:
[80, 89, 97]

[80]

79 wurde nicht gefunden
Aufrufe binarysearch
k=4 < n=16
gesuchte Zahl: 80

[13, 33, 42, 42, 44, 44,
92 By sb95: B2y T2 D2;
[72, 92, 94]

[72]

80 wurde nicht gefunden

Aufrufe binarysearch

k=5 < n=32

zu suchende Zahl: 33

[6, 9: 9, 11, 13, 18, 189, 23,
[6; 9; 9 11; 13; 18; 19; 23,

[28, 32, 34, 37, 37, 44
[28, 32, 34]

[34]

33 wurde nicht gefunden
hufrufe binarysearch

r

1

45,
94]

4

44]

=

97]

45,

26,
26,

47,

28,
28,

52,

32,

34,
34,

27
Sy

37,

44,
44,

44,
441]

43,

86,

94,

95,

97,

97,

98]

Eine Verdopplung der ,ProblemgréBe® n impliziert hchstens einen weiteren Aufruf von binarysearch!
Offensichtlich gilt:
z=k
Wegen n = 2¥ & k = logz(n) folgt:
z = logz(n)
Somit hat der Algorithmus binarysearch logarithmische Komplexitat:
A(n) ~logz(n)
Bemerkung:
Bei rekursiver Formulierung des Algorithmus BinarySearch ist die Speicherkomplexitidt ebenfalls von der Ordnung
O(logz(n)), da bei jedem Aufruf der Funktion binarysearch neuer Speicherplatz fir die Variablen bereitgestellt

wird. Die weniger elegante iterative Formulierung von BinarySearch hétte zur Laufzeit einen vernachldssigbar
geringeren Speicherbedarf zur Folge als die rekursive Formulierung.

