
Binäre Suche Informatik 12 Februar 2024

Gegeben: Ein aufsteigend sortiertes Array a mit den n Komponenten a[0], , a[n-1]

Aufgabe: Entscheide, ob ein für die Variable value eingegebener Suchwert mit dem Wert einer Komponente des

Arrays a übereinstimmt.

Wir durchlaufen den Algorithmus schrittweise anhand des folgenden Beispiels.

Gegeben: Array a mit den Komponenten a[0], , a[9]; n = len(a) = 10

value = 13

Die rekursiv formulierte Boolesche Funktion binarysearch liefert den Wert True, falls value mit dem Wert
irgendeiner Komponente von a übereinstimmt, andernfalls liefert sie den Wert False.

Wir übergeben value und die Liste a[0], . . . , a[9]

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

3 4 5 5 7 8 11 13 19 21

der Funktion binarysearch,
welche a[0], . . . , a[9] als lokale Liste array[0], . . . , array[9] fortführt:

array[0] array [1] array [2] array [3] array [4] array [5] array [6] array [7] array [8] array [9]

3 4 5 5 7 8 11 13 19 21

 2

1. Schritt:
Bestimme den mittleren Index middle des Arrays array: middle = len(array)//2 = 10//2 = 5

2. Schritt:
midvalue = array[middle] = array[5] = 8
Vergleiche value mit midvalue:
Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!
Falls value < midvalue: suche in der Liste array[0], . . . , array[4] links von array[5]
Falls value > midvalue: suche in der Liste array[6], . . . , array[9] rechts von array[5]

hier: wegen 13 > 8 suche in der Liste array[6], . . . , array[9] .

binarysearch übergibt value und die Liste array[6], . . . , array[9]

array[6] array [7] array [8] array [9]

11 13 19 21

der Funktion binarysearch,
welche array [6], . . . , array [9] als lokale Liste array[0], . . . , array[3] fortführt:

array[0] array[1] array[2] array[3]

11 13 19 21

 3

1. Schritt:
Bestimme den mittleren Index middle des Arrays array: middle = len(array)//2 = 4//2 = 2

2. Schritt:
midvalue = array[middle] = array[2] = 19
Vergleiche value mit midvalue:
Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!
Falls value < midvalue: suche in der Liste array[0], array[1] links von array[2]
Falls value > midvalue: suche in der Liste array[3] rechts von array[2]

hier: wegen 13 < 19 suche in der Liste array[0], . . . , array[1] .

binarysearch übergibt value und die Liste array[0], . . . , array[1]

array[0] array[1]

11 13

der Funktion binarysearch,
welche array [0], . . . , array [1] als lokale Liste array[0], . . . , array[1] fortführt:

array[0] array[1]

11 13

 4

1. Schritt:
Bestimme den mittleren Index middle des Arrays array: middle = len(array)//2 = 2//2 = 1

2. Schritt:
midvalue = array[middle] = array[1] = 13
Vergleiche value mit midvalue:
Falls value == midvalue: binarysearch gibt den Wert True zurück; gefunden!
Falls value < midvalue: suche in der Liste array[0] links von array[1]
Falls value > midvalue: die Liste [] rechts von array[1] ist leer;

dann gibt binarysearch den Wert False zurück: nicht gefunden!

Hier: da der Suchwert value und array[middle] übereinstimmen, hat der Boolesche Term

value == midvalue den Wert True; folglich liefert binarysearch den Wert True: gefunden!

Wäre 12 der Suchwert, erhielte man wegen 12<13 im 2. Schritt: suche in der Liste array[0] links von array[1]

binarysearch übergibt value und die Liste array[0]

array[0]

11

der Funktion binarysearch, welche den Wert False liefert, da array[0]value und array die Länge 1 hat.
Zusammengefaßt: binarysearch liefert den Wert False, falls

array == [] or (array[0] != value and len(array) == 1)

den Wert True annimmt.

 5

Formulierungen der Booleschen Funktion binarysearch in Python:

Funktionsaufruf zum Suchen von value im sortierten Feld a: binarysearch(value,a)

Mittels einer Zählvariablen z ermitteln wir die Anzahl der Aufrufe von binarysearch, die Anweisung
print(array) gibt die jeweilige Teilliste aus, auf der binarysearch operiert:

.
z = 0
.
def binarysearch(array,value):
 global z
 z += 1
 print(array)
 if array == [] or (len(array) == 1 and array[0] != value): return False

.

 6

Komplexität des Algorithmus binarysearch:

Die Komplexität zur Laufzeit und damit der Rechenaufwand A(n) wird wesentlich bestimmt durch die Anzahl der
Vergleiche von value mit midvalue, somit durch die Anzahl z der Aufrufe der rekursiv definierten Funktion
binarysearch; o. B. d. A. sei n eine Potenz von 2, d. h. n = 2k mit k = 0, 1, 2, 3, 4,
Beachte: die maximale Anzahl von Aufrufen (worst case) tritt ein, falls die Suche ergebnislos ist.

k = 0  n = 1

k = 3  n = 8

k = 4  n = 16

k = 5  n = 32

 7

Eine Verdopplung der „Problemgröße“ n impliziert höchstens einen weiteren Aufruf von binarysearch!

Offensichtlich gilt:

z = k

Wegen n = 2k  k = log2(n) folgt:

z = log2(n)

Somit hat der Algorithmus binarysearch logarithmische Komplexität:

A(n)  log2(n)

Bemerkung:
Bei rekursiver Formulierung des Algorithmus BinarySearch ist die Speicherkomplexität ebenfalls von der Ordnung
O(log2(n)), da bei jedem Aufruf der Funktion binarysearch neuer Speicherplatz für die Variablen bereitgestellt
wird. Die weniger elegante iterative Formulierung von BinarySearch hätte zur Laufzeit einen vernachlässigbar
geringeren Speicherbedarf zur Folge als die rekursive Formulierung.

