Beweisverfahren

Im Folgenden stehen A und B flir Aussagen. Eine Aussage hat den Booleschen
Wert True oder False. Mit —A bezeichnen wir die Verneinung der Aussage A.

Die Boolesche or-Verknipfung wird auch mit dem Symbol v, die Boolesche and-
Verknipfung mit dem Symbol A bezeichnet.

Wenn aus ,A == True" folgt: ,B == True", schreiben wir:
A = B (lies: ,aus A folgt B" oder ,A impliziert B")

Die Implikation A = B ist ebenfalls eine Aussage, die den Wert True oder False
annehmen kann.

Die Implikation B = A heiBt die Umkehrung der Implikation A= B .

Falls die Implikationen A= B und B = A jeweils den Wert True haben, heien
die Aussagen A und B aquivalent: A < B (lies: ,A dquivalent zu B")

kurz: (A=>B A B>A) & (A=B)

Merke: (A > B) & (-B = -A)

Beispiel 1
A = ,Die Qualifikation im Prifungsbereich ist erreicht®
B = ,Im Prifungsbereich wurden mindestens 100 Punkte erzielt"

—A = ,Die Qualifikation im Priifungsbereich ist nicht erreicht®
—B = ,Im Prifungsbereich wurden weniger als 100 Punkte erzielt"

Die Implikation A = B hat den Wahrheitswert True:

Wenn die Qualifikation im Prifungsbereich erreicht ist, wurden im
Prifungsbereich mindestens 100 Punkte erzielt.

Ebenso hat diezu A = B 4&quivalente Implikation —-B = —A den
Wahrheitswert True:

Wenn im Priifungsbereich weniger als 100 Punkte erzielt wurden, ist die
Qualifikation im Prifungsbereich nicht erreicht.

Dagegen hat die Umkehrung B = A den Wahrheitswert False:

Die Implikation
Wenn im Prifungsbereich mindestens 100 Punkte erzielt wurden, ist die
Qualifikation im Prifungsbereich erreicht.

ist falsch!

1. Direkter Beweis
Der direkte Beweis verifiziert unmittelbar die Implikation A= B .

Beispiel 2 (Satz des Pythagoras):

A = ,Das Dreieck AABC hat einen rechten Winkel®

B = ,Das Quadrat einer der Seiten ist gleich der Summe der Quadrate der
beiden anderen Seiten®

oder:

Gegeben: AABC
A= ,y=/ACB = 90°"
B = "a2+b2=c2\\

Dann gilt der Satz des Pythagoras:

Die Implikationen A = B und B = A sind jeweils wahr, die Aussagen A und B
sind somit dquivalent: A< B
In Worten:

SATz: Ein Dreieck AABC hat einen rechten Winkel genau dann, wenn das Quadrat
einer der Seiten gleich der Summe der Quadrate der beiden anderen
Seiten ist. Dabei liegt der rechte Winkel der groBten Seite gegeniber.

Beispiel 3

Gegeben sei eine differenzierbare Funktion f.
A = ,Die Funktion f nimmt an der Stelle x=xg ein lokales Extremum an"
B = ,f(x) =0

Dann gilt: Die Implikation A = B ist wahr.

In Worten:

SATZ: Wenn die Funktion f an der Stelle x=xg ein lokales Extremum annimmt,
folgt: f'(xg) = 0.

Aquivalente Formulierung:
Wegen (A => B) <& (—-B = —A)) laBt sich der vorstehende Satz auch wie
folgt formulieren:

SATz: Wenn f'(xg) = 0, folgt:
Die Funktion f nimmt an der Stelle x=xg kein Extremum an.

Die Bedingung f'(xg) = 0 ist flir die Existenz eines lokalen Extremums an der
Stelle x=xg zwar notwendig, aber keineswegs hinreichend, wie folgendes Beispiel
zeigt:

Die Ableitung der differenzierbaren Funktion f(x) = x* verschwindet an der Stelle
x=0, aber f nimmt an der Stelle x=0 ein Extremum nicht an (vielmehr hat der
Graph von f an der Stelle x=0 einen Wendepunkt mit waagerechter Tangente).

Die Umkehrung B = A ist — wegen vorstehenden Gegenbeispiels — somit
falsch!

2. Indirekter Beweis
Anstatt die Implikation A = B zu verifizieren, verifiziert man die dquivalente
Implikation —-B = —A.

Beispiel 4
Definition: Eine Zahl x heiBt rational, wenn sie sich als Bruch darstellen [aBt,
andernfalls heiBt x irrational.

SATZ: 2 istirrational.
Prazisere Formulierung vorstehender Behauptung:

SATz: Wenn das Quadrat einer Zahl x den Wert 2 hat, folgt: x ist irrational.

A , X ist eine Zahl mit x> = 2"
B » X ist irrational

—A =, X ist eine Zahl mit x? 2"
—-B =, x ist rational "

Anstatt A = B zu verifizieren, verifizieren wir die dquivalente Implikation
-B = —A:

SATZ: Wenn x rational ist, folgt: x? kann den Wert 2 nicht annehmen.

Beweis:
Annahme: x ist rational, und x> hat den Wert 2.

x rational = Es gibt ganze Zahlen p und q, g=0, mit x = p/q;
oBdA setzen wir voraus, daB p und q teilerfremd sind, daB3 der
Bruch p/q also gekiirzt ist.

X2 = p¥/q?
2 = p*/q?

2 g% = p?

p? ist gerade

p ist gerade

Es gibt eine ganze Zahl k mit p = 2k
2 9% = (2k)?

29 =4k

q? =2 K2

q? ist gerade

q ist gerade

Es gibt eine ganze Zahl m mit g = 2m

L L e L A I

p und g sind gerade, haben jeweils den Teiler 2; p und q sind also
entgegen der Voraussetzung nicht teilerfremd.

Damit haben wir einen Widerspruch zu der Annahme konstruiert, dal3 x ein
gekirzter Bruch ist und daB das Quadrat von x den Wert 2 hat; somit gibt es
keine rationale Zahl, deren Quadrat den Wert 2 hat.

Beispiel 5

Die Informatik kennt folgende als Halteproblem bezeichnete Problemstellung:

Behauptung: Es gibt kein allgemeines Entscheidungsverfahren, welches als
Eingabe den Quelltext eines beliebigen Programms p sowie des-
sen Eingabedaten x hat und entscheidet, ob das Programm p mit
Eingabedaten x nach endlich vielen Schritten terminiert oder
nicht terminiert.

Der Beweis |aBt sich indirekt fliihren, indem man unter der Annahme, daB3 es ein
solches Entscheidungsverfahren gibt, einen Widerspruch zur Annahme herleitet.

Der strenge Beweis zum Halteproblem rekurriert auf das von Alan Turing konzi-
pierte Modell der Turing-Maschine; wir verfolgen hier eine Argumentation, die auf
Schulniveau nachvollziehbar ist, und lehnen uns dabei an eine héhere Program-
miersprache (hier: Python) an:

Den Algorithmus, der die Entscheidung Uber die Terminierung eines Programms p
mit Eingabedaten x liefert, formulieren wir als boolesche Funktion ,stop"™, welche
als Eingabe das Programm p sowie dessen Eingabedaten x erhalt. ,,stop" liefert
den Wert True, falls p angewendet auf x terminiert; falls p angewendet auf x

nicht terminiert, liefert ,, stop"™ den Wert False.
Die im Quelltext der Funktion ,,stop™ benutzte Boolesche Variable condition

nimmt dabei den Wert True an, falls p, angewandt auf x, terminiert; andernfalls
erhalt condition den Wert False.

def stop(p, x):

if condition == True: return True
else: return False
falls
Quelltext p das Python-Programm p
- |:> |:> < bei der Verarbeitung
Daten x der Daten x hdlt,
sonst

Das folgende Programm ,strange" hat als Eingabe ein Programm p (formuliert
als Quelltext p) und benutzt die oben definierte boolesche Funktion ,,stop".

Insbesondere ist zuldssig, daB ,,strange" seinen eigenen Quelltext p als Eingabe
erhalt:

strange
def stop(p, x):
if condition: return True

else: return False

Eingabe des Quelltextes p
p = input()

if stop(p, p):
while True: pass

print('strange terminiert')

strange

[halt und liefert False }
stop

False falls
Quelitext
Quell ':> @ das Python-Programm bei der
S ‘:> |:> \::> Verarbeitung des eigenen

Quelltextes nicht halt,
Quelltext |:> e @ sonst

[halt nicht]
Beachte:

Falls ,,stop"™ den Wert True annimmt, gerat , strange" in eine Endlosschleife (in
Python ist pass eine leere Anweisung, bei der nichts geschieht), falls , stop™ den
Wert False erhalt, terminiert ,,strange™ und gibt den Text ,strange terminiert"
aus.

Da ,strange" als allgemeines Verfahren jeden Quelltext p akzeptiert, ist es ins-
besondere zuldssig, daB ,,strange" seinen eigenen Quelltext p als Eingabedaten
erhalt, ,strange™ somit auf sich selbst angewendet wird.

Unter der Voraussetzung, daB es eine Boolesche Funktion stop(p, x) gibt,

die entscheidet, ob das Programm p mit Eingabedaten x terminiert oder nicht
terminiert, untersuchen wir folgenden Falle:

1. Fall:

Annahme:

~strange™ terminiert, falls ,,strange™ als Eingabe seinen eigenen Quelltext p er-

halt.

= Die Funktion stop (p, p) nimmt den Wahrheitswert True an.

= ,strange"™ gerdt in die Endlosschleife while True: pass

= ,strange" terminiert nicht, im Widerspruch zu der Annahme, daB
~Strange™ nach Eingabe seines eigenen Quelltexts anhalt.

2. Fall:

Annahme:

»Strange™ terminiert nicht, falls ,strange™ als Eingabe seinen eigenen Quelltext
p erhalt.

= Die Funktion stop (p, p) nimmt den Wahrheitswert False an.

= ,strange™ terminiert mit Ausgabe des Text-Strings ,strange terminiert®, im
Widerspruch zu der Annahme, daB ,,strange™ nach Eingabe seines eigenen
Quelltexts nicht anhalt.

Da sich in beiden Fallen ein Widerspruch zur Annahme ergibt, kann es eine Boole-
sche Funktion stop(p, =x), die entscheidet, ob p mit Eingabedaten x termi-

niert oder nicht terminiert, nicht geben.

3. Das Beweisverfahren ,Vollstdndige Induktion™

Sei A(n) eine von der natirlichen Zahl n abhangige Aussage, n € {0, 1, 2, . . }.
Um zu beweisen, daB A(n) wahrist fir allen € {0, 1, 2, 3, }, verifizieren
wir:

(1) A(0) istwahr (Induktionsanfang)

(2) Die Implikation [A(n) = A(n+1)] ist wahr (Induktionsschritt)

Bevor wir dieses Verfahren auf den Korrektheitsbeweis von Algorithmen
anwenden, sollten wir es bei einfachen innermathematischen Problemen eintiben
und verstehen.

Beispiel 6:

Behauptung: 12+ 22+ 32+ + n? = n(n+1)(2n+1)/6
Beweis:

Definiere A(n) := , 12+ + n? = n(n+1)(2n+1)/6"

(Beachte: A(n) ist eine Gleichung, insbesondere also eine Aussage, die genau
zwei boolesche Werte annehmen kann: TRUE oder FALSE.)

Induktionsanfang (n=1):

A(1)=TRUE,

denn

A(1) © [12=1(1+1)(21+1)/6] & [1=123/6] o [1=1]
die letzte Aussage hat trivialerweise den Wert TRUE.

Induktionsschritt:

Unter der Annahme, daB A(n) TRUE ist, verifizieren wir, daB dann auch A(n+1)
den Wert TRUE annimmt.

Sei also A(n) TRUE, das heif3t

124+ 22+3%2+....... + n? = n(n+1)(2n+1)/6 ist richtig fiir beliebiges n
(diese Annahme heif3t auch Induktionsvoraussetzung).

Wir betrachten A(n+1), also die Gleichung
12422+ .,...... +(n+1)2=(n+ 1)[(n+1) + 1][2(n+1) + 1]/6,

die wir unter der Annahme, daBB A(n) TRUE ist, als TRUE qualifizieren werden.

...... +n?]+ (n+ 1)

[
N
+
N
N
+
+
~
=3
+
[
[
N
1
p—
[
N
+
N
N
+

wegen A(n) = TRUE folgt
n(n+1)(2n+1)/6 + (n + 1)

(n+ 1)[n(2n+1)/6 + (n + 1)]
(n+ 1)[n(2n+1) + 6(n + 1)]/6

(n + 1)[2n*+n + 6n + 6)]/6

(n + 1)[2n’+ 7n + 6)]1/6

(n+ 1)[(n + 2)(2n + 3)]/6

(n+ 1)[(n+1) + 1][2(n+1) + 1]/6

Somit folgt unter der Annahme ,,A(n)=TRUE", daB ,A(n+1)=TRUE" wahr ist, und
in Verbindung mit dem Induktionsanfang ,A(1)=TRUE" ergibt sich die Behauptung
fur alle Werte von n.

Die in den Beispielen 8 und 9 formulierten Problemstellungen bearbeite man als
Ubungsaufgaben (n sei eine natirliche Zahl):

Beispiel 8:
Behauptung: 13+ 23 +33+....... + n3® = n?(n+1)%/4

Beispiel 9:
Behauptung: Die Bernoullische Ungleichung (1 +x)"> 1+ n.Xx

ist wahr flr alle natlrlichen Zahlen n mit n > 2 und fir reelle
Zahlen x mit x # 0 und 1+x > 0.

Beispiel 10 (Korrektheitsbeweis fiir einen Algorithmus):
n sei eine natlrliche Zahl (n > 0), und a sei reell mit a = 0.
Behauptung:

Nach Eingabe von a und n liefert der folgende als Struktogramm gegebene
Algorithmus die Potenz p = a".

Eingabe a; n

b:i=a; u:=nj; p:=1;

while u>0

u ungerade

+ —
u:=u-1
p:=p*b

u:=u div 2
:=b*b

o

Ausgabe p

Hinweis: mit dem Symbol := wird die Wertzuweisung bezeichnet.

Um obenstehende Behauptung zu beweisen, verifizieren wir zunachst:

Die Beziehung
p- bY= a"

ist vor und nach jedem Schleifendurchlauf erfillt, also invariant gegentiber
Schleifendurchldufen. Eine solche Gleichung heil3t auch Schleifeninvariante.

Der Algorithmus bricht ab, sobald u den Wert 0 annimmt; da u bei jedem
Schleifendurchlauf um 1 vermindert wird, falls u ungerade ist, in jedem Fall aber
durch 2 ganzzahlig dividiert wird, ist die Bedingung u = 0, mit der der
Algorithmus abbricht, nach endlich vielen Schleifendurchlaufen mit Sicherheit
erflllt.

Fir u=0 schreibt sich die Schleifeninvariante:

n

p-b°=a

n

= p=a

Damit ist gezeigt, daB bei Abbruch des Algorithmus die Zahl a" ausgegeben wird,
falls die Beziehung p - b" = a" sich als Schleifeninvariante erweist.

Wir verifizieren die Behauptung, daB p - b = a" Schleifeninvariante ist,
vermoége vollstandiger Induktion Uber den Index i, der den i-ten
Schleifendurchlauf bezeichnet (i=1, 2, 3,).

Mit p; b; und u; bezeichnen wir die Werte der Variablen p , b und u vor dem i-ten
Schleifendurchlauf.

Induktionsanfang (i=1):
Vor dem 1. Schleifendurchlauf gilt wegen p; =1, by =a undu; =n:

p:-b."* =1-3" =a" , somit ist die Beziehung p - b* = a" fur i=1 erfallt.

Induktionsschritt:

Wir nehmen an, daB die Beziehung p - b* = a" vor dem i-ten Schleifendurchlauf
erfullt ist, daB also gilt:

pi'biUi = an (*)

Wir verifizieren, daB unter der Induktionsannahme (*) die Beziehung p - b" = a"
auch nach dem i-ten, also vor dem (i + 1)-ten Schleifendurchlauf erfullt ist.

Dazu driucken wir die Werte pi+1, bit1 und u;;q der Variablen p , b und u durch die
Werte p;, bi und u; aus. Da die Eigenschaft von u, gerade oder ungerade zu sein,
auf die Berechnung der neuen Werte von p , b und u EinfluB hat, missen wir
eine Fallunterscheidung vornehmen:

a) U sei ungerade vor dem i-ten Schleifendurchlauf, also odd(u;) = TRUE .
Pi+1 = Pi- b; < Pi = Pir1/ b
bi.1 = b; - b; = bi='VbH1
Uaa=(Ui-1)/2 o ui=2-uj+1

Wenn wir in die Gleichung (*) die fir p; , b; und u; erhaltenen Werte
einsetzen, folgt (beachte die Schreibweise bY = bAu):

a" = p;i- biMy;
(Pi+1/ b)) - (V bis1) (2 - Ujyy + 1)
= (Pis1/ V bis1) - (‘/ bi+1)*(2 - Uiz + 1)

= Pi+1- bir1 MUy

B) u sei gerade vor dem i-ten Schleifendurchlauf, also odd(u;) = FALSE .
Ubungsaufgabe!

Beispiel 11 .
(Korrektheitsbeweis flir den Algorithmus ,,Agyptische Multiplikation"):

Der folgende als Struktogramm gegebene Algorithmus verlangt natirliche Zahlen
a und b als Eingabe und liefert das Ergebnis s:

Eingabe a , b

while u > 0

u gerade
+ 2
5 1= 535 + WV
u = 1u div 2
Vv =V + V¥

Ausgabe s

a) Begriinde: Der Algorithmus terminiert fir alle zuldassigen Eingabewerte.

b) Verifiziere mit dem Beweisverfahren der Vollstandigen Induktion:
Die Beziehung

s+u-v=a-b
ist Schleifeninvariante.

c) Folgere: Der Algorithmus liefert mit s das Produkt der Eingabewerte a und b.

Bemerkung: Dieser Algorithmus benutzt die Verdopplung und die ganzzahlige Division durch 2 als
wesentliche Rechenoperationen. Diese Rechenoperationen lassen sich im Dualsystem besonders
einfach realisieren: Durch einen ,leftshift" um eine Stelle wird eine Dualzahl verdoppelt, mit einem
,rightshift" um eine Stelle wird eine Dualzahl ganzzahlig halbiert.

leftshift: 00011101 — 00111010 (dezimal: 29 + 29 = 58)

rightshift: 00100111 — 00010011 (dezimal: 39 div 2 = 19)

Karl-Heinz Selbach
V/2025

