
Beweisverfahren

Im Folgenden stehen A und B für Aussagen. Eine Aussage hat den Booleschen
Wert True oder False. Mit A bezeichnen wir die Verneinung der Aussage A.

Die Boolesche or-Verknüpfung wird auch mit dem Symbol  , die Boolesche and-
Verknüpfung mit dem Symbol  bezeichnet.

Wenn aus „A == True“ folgt: „B == True“, schreiben wir:

A  B (lies: „aus A folgt B“ oder „A impliziert B“)

Die Implikation A  B ist ebenfalls eine Aussage, die den Wert True oder False
annehmen kann.

Die Implikation B  A heißt die Umkehrung der Implikation A  B .

Falls die Implikationen A  B und B  A jeweils den Wert True haben, heißen
die Aussagen A und B äquivalent: A  B (lies: „A äquivalent zu B“)

kurz: (A  B  B  A)  (A  B)

Merke: (A  B)  (B  A)

Beispiel 1

A = „Die Qualifikation im Prüfungsbereich ist erreicht“
B = „Im Prüfungsbereich wurden mindestens 100 Punkte erzielt“

A = „Die Qualifikation im Prüfungsbereich ist nicht erreicht“
B = „Im Prüfungsbereich wurden weniger als 100 Punkte erzielt“

Die Implikation A  B hat den Wahrheitswert True:

Wenn die Qualifikation im Prüfungsbereich erreicht ist, wurden im
Prüfungsbereich mindestens 100 Punkte erzielt.

Ebenso hat die zu A  B äquivalente Implikation B  A den
Wahrheitswert True:

Wenn im Prüfungsbereich weniger als 100 Punkte erzielt wurden, ist die
Qualifikation im Prüfungsbereich nicht erreicht.

Dagegen hat die Umkehrung B  A den Wahrheitswert False:
Die Implikation

Wenn im Prüfungsbereich mindestens 100 Punkte erzielt wurden, ist die
Qualifikation im Prüfungsbereich erreicht.

ist falsch!

1. Direkter Beweis

Der direkte Beweis verifiziert unmittelbar die Implikation A  B .

Beispiel 2 (Satz des Pythagoras):

A = „Das Dreieck ABC hat einen rechten Winkel“
B = „Das Quadrat einer der Seiten ist gleich der Summe der Quadrate der

beiden anderen Seiten“
oder:

Gegeben: ABC
A = „  = ACB = 90o “
B = „ a2 + b2 = c2 “

 2

Dann gilt der Satz des Pythagoras:

Die Implikationen A  B und B  A sind jeweils wahr, die Aussagen A und B
sind somit äquivalent: A  B

In Worten:

SATZ: Ein Dreieck ABC hat einen rechten Winkel genau dann, wenn das Quadrat
einer der Seiten gleich der Summe der Quadrate der beiden anderen
Seiten ist. Dabei liegt der rechte Winkel der größten Seite gegenüber.

Beispiel 3

Gegeben sei eine differenzierbare Funktion f.
A = „Die Funktion f nimmt an der Stelle x=xE ein lokales Extremum an“
B = „f’(xE) = 0“

Dann gilt: Die Implikation A  B ist wahr.

In Worten:

SATZ: Wenn die Funktion f an der Stelle x=xE ein lokales Extremum annimmt,
folgt: f’(xE) = 0.

Äquivalente Formulierung:
Wegen (A  B)  (B  A) läßt sich der vorstehende Satz auch wie
folgt formulieren:

SATZ: Wenn f’(xE)  0, folgt:

Die Funktion f nimmt an der Stelle x=xE kein Extremum an.

Die Bedingung f’(xE) = 0 ist für die Existenz eines lokalen Extremums an der
Stelle x=xE zwar notwendig, aber keineswegs hinreichend, wie folgendes Beispiel
zeigt:

Die Ableitung der differenzierbaren Funktion f(x) = x3 verschwindet an der Stelle
x=0, aber f nimmt an der Stelle x=0 ein Extremum nicht an (vielmehr hat der
Graph von f an der Stelle x=0 einen Wendepunkt mit waagerechter Tangente).

Die Umkehrung B  A ist  wegen vorstehenden Gegenbeispiels  somit
falsch!

2. Indirekter Beweis

Anstatt die Implikation A  B zu verifizieren, verifiziert man die äquivalente
Implikation B  A .

Beispiel 4

Definition: Eine Zahl x heißt rational, wenn sie sich als Bruch darstellen läßt,
andernfalls heißt x irrational.

SATZ: 2 ist irrational.

Präzisere Formulierung vorstehender Behauptung:

SATZ: Wenn das Quadrat einer Zahl x den Wert 2 hat, folgt: x ist irrational.

A = „ x ist eine Zahl mit x2 = 2 “
B = „ x ist irrational “
A = „ x ist eine Zahl mit x2  2 “
B = „ x ist rational “

 3

Anstatt A  B zu verifizieren, verifizieren wir die äquivalente Implikation
B  A :

SATZ: Wenn x rational ist, folgt: x2 kann den Wert 2 nicht annehmen.

Beweis:

Annahme: x ist rational, und x2 hat den Wert 2.

x rational  Es gibt ganze Zahlen p und q, q0, mit x = p/q;
oBdA setzen wir voraus, daß p und q teilerfremd sind, daß der
Bruch p/q also gekürzt ist.

 x2 = p2/q2

 2 = p2/q2

 2 q2 = p2

 p2 ist gerade

 p ist gerade

 Es gibt eine ganze Zahl k mit p = 2k

 2 q2 = (2k)2

 2 q2 = 4 k2

 q2 = 2 k2

 q2 ist gerade

 q ist gerade

 Es gibt eine ganze Zahl m mit q = 2m

 p und q sind gerade, haben jeweils den Teiler 2; p und q sind also
entgegen der Voraussetzung nicht teilerfremd.

Damit haben wir einen Widerspruch zu der Annahme konstruiert, daß x ein
gekürzter Bruch ist und daß das Quadrat von x den Wert 2 hat; somit gibt es
keine rationale Zahl, deren Quadrat den Wert 2 hat.

Beispiel 5

Die Informatik kennt folgende als Halteproblem bezeichnete Problemstellung:

Behauptung: Es gibt kein allgemeines Entscheidungsverfahren, welches als
Eingabe den Quelltext eines beliebigen Programms p sowie des-
sen Eingabedaten x hat und entscheidet, ob das Programm p mit
Eingabedaten x nach endlich vielen Schritten terminiert oder
nicht terminiert.

Der Beweis läßt sich indirekt führen, indem man unter der Annahme, daß es ein
solches Entscheidungsverfahren gibt, einen Widerspruch zur Annahme herleitet.

Der strenge Beweis zum Halteproblem rekurriert auf das von Alan Turing konzi-
pierte Modell der Turing-Maschine; wir verfolgen hier eine Argumentation, die auf
Schulniveau nachvollziehbar ist, und lehnen uns dabei an eine höhere Program-
miersprache (hier: Python) an:

 4

Den Algorithmus, der die Entscheidung über die Terminierung eines Programms p
mit Eingabedaten x liefert, formulieren wir als boolesche Funktion „stop“, welche
als Eingabe das Programm p sowie dessen Eingabedaten x erhält. „stop“ liefert
den Wert True, falls p angewendet auf x terminiert; falls p angewendet auf x
nicht terminiert, liefert „stop“ den Wert False.

Die im Quelltext der Funktion „stop“ benutzte Boolesche Variable condition
nimmt dabei den Wert True an, falls p, angewandt auf x, terminiert; andernfalls
erhält condition den Wert False.

def stop(p, x):
 if condition == True: return True
 else: return False

Das folgende Programm „strange“ hat als Eingabe ein Programm p (formuliert
als Quelltext p) und benutzt die oben definierte boolesche Funktion „stop“.

Insbesondere ist zulässig, daß „strange“ seinen eigenen Quelltext p als Eingabe
erhält:

strange

def stop(p, x):
 if condition: return True
 else: return False

Eingabe des Quelltextes p
p = input()

if stop(p, p):
 while True: pass

print('strange terminiert')

 5

Beachte:
Falls „stop“ den Wert True annimmt, gerät „strange“ in eine Endlosschleife (in
Python ist pass eine leere Anweisung, bei der nichts geschieht), falls „stop“ den
Wert False erhält, terminiert „strange“ und gibt den Text „strange terminiert“
aus.

Da „strange“ als allgemeines Verfahren jeden Quelltext p akzeptiert, ist es ins-
besondere zulässig, daß „strange“ seinen eigenen Quelltext p als Eingabedaten
erhält, „strange“ somit auf sich selbst angewendet wird.

Unter der Voraussetzung, daß es eine Boolesche Funktion stop(p, x) gibt,
die entscheidet, ob das Programm p mit Eingabedaten x terminiert oder nicht
terminiert, untersuchen wir folgenden Fälle:

1. Fall:

Annahme:
„strange“ terminiert, falls „strange“ als Eingabe seinen eigenen Quelltext p er-
hält.

 Die Funktion stop(p, p) nimmt den Wahrheitswert True an.
 „strange“ gerät in die Endlosschleife while True: pass
 „strange“ terminiert nicht, im Widerspruch zu der Annahme, daß
 „strange“ nach Eingabe seines eigenen Quelltexts anhält.

2. Fall:

Annahme:
„strange“ terminiert nicht, falls „strange“ als Eingabe seinen eigenen Quelltext
p erhält.

 Die Funktion stop(p, p) nimmt den Wahrheitswert False an.
 „strange“ terminiert mit Ausgabe des Text-Strings „strange terminiert“, im

Widerspruch zu der Annahme, daß „strange“ nach Eingabe seines eigenen
Quelltexts nicht anhält.

Da sich in beiden Fällen ein Widerspruch zur Annahme ergibt, kann es eine Boole-
sche Funktion stop(p, x), die entscheidet, ob p mit Eingabedaten x termi-
niert oder nicht terminiert, nicht geben.

 6

3. Das Beweisverfahren „Vollständige Induktion“

Sei A(n) eine von der natürlichen Zahl n abhängige Aussage, n  {0, 1, 2, . . }.

Um zu beweisen, daß A(n) wahr ist für alle n  {0, 1, 2, 3, }, verifizieren
wir:

 (1) A(0) ist wahr (Induktionsanfang)

 (2) Die Implikation [A(n)  A(n+1)] ist wahr (Induktionsschritt)

Bevor wir dieses Verfahren auf den Korrektheitsbeweis von Algorithmen
anwenden, sollten wir es bei einfachen innermathematischen Problemen einüben
und verstehen.

Beispiel 6:

Behauptung: 12 + 22 + 32 + + n2 = n(n+1)(2n+1)/6

Beweis:

Definiere A(n) := „12 + + n2 = n(n+1)(2n+1)/6“

(Beachte: A(n) ist eine Gleichung, insbesondere also eine Aussage, die genau
zwei boolesche Werte annehmen kann: TRUE oder FALSE.)

Induktionsanfang (n=1):

A(1)=TRUE ,
denn
A(1)  [12 = 1(1+1)(21+1)/6]  [1 = 123/6]  [1=1]
die letzte Aussage hat trivialerweise den Wert TRUE.

Induktionsschritt:

Unter der Annahme, daß A(n) TRUE ist, verifizieren wir, daß dann auch A(n+1)
den Wert TRUE annimmt.

Sei also A(n) TRUE, das heißt

12 + 22 + 32 + + n2 = n(n+1)(2n+1)/6 ist richtig für beliebiges n
(diese Annahme heißt auch Induktionsvoraussetzung).

Wir betrachten A(n+1), also die Gleichung

12 + 22 + + (n + 1)2 = (n + 1)[(n+1) + 1][2(n+1) + 1]/6,

die wir unter der Annahme, daß A(n) TRUE ist, als TRUE qualifizieren werden.

12 + 22 + + (n + 1)2 = [12 + 22 + + n2] + (n + 1)2

wegen A(n) = TRUE folgt
 = n(n+1)(2n+1)/6 + (n + 1)2

 = (n + 1)[n(2n+1)/6 + (n + 1)]

 = (n + 1)[n(2n+1) + 6(n + 1)]/6

 7

 = (n + 1)[2n2+n + 6n + 6)]/6

 = (n + 1)[2n2+ 7n + 6)]/6

 = (n + 1)[(n + 2)(2n + 3)]/6

 = (n + 1)[(n+1) + 1][2(n+1) + 1]/6

Somit folgt unter der Annahme „A(n)=TRUE“, daß „A(n+1)=TRUE“ wahr ist, und
in Verbindung mit dem Induktionsanfang „A(1)=TRUE“ ergibt sich die Behauptung
für alle Werte von n.

Die in den Beispielen 8 und 9 formulierten Problemstellungen bearbeite man als
Übungsaufgaben (n sei eine natürliche Zahl):

Beispiel 8:

Behauptung: 13 + 23 + 33 + + n3 = n2(n+1)2/4

Beispiel 9:

Behauptung: Die Bernoullische Ungleichung (1 + x)n > 1 + n  x

ist wahr für alle natürlichen Zahlen n mit n  2 und für reelle
Zahlen x mit x  0 und 1+x > 0.

Beispiel 10 (Korrektheitsbeweis für einen Algorithmus):

n sei eine natürliche Zahl (n > 0), und a sei reell mit a  0.

Behauptung:
Nach Eingabe von a und n liefert der folgende als Struktogramm gegebene
Algorithmus die Potenz p = an.

Hinweis: mit dem Symbol := wird die Wertzuweisung bezeichnet.

 8

Um obenstehende Behauptung zu beweisen, verifizieren wir zunächst:

Die Beziehung

p  bu = an

ist vor und nach jedem Schleifendurchlauf erfüllt, also invariant gegenüber
Schleifendurchläufen. Eine solche Gleichung heißt auch Schleifeninvariante.

Der Algorithmus bricht ab, sobald u den Wert 0 annimmt; da u bei jedem
Schleifendurchlauf um 1 vermindert wird, falls u ungerade ist, in jedem Fall aber
durch 2 ganzzahlig dividiert wird, ist die Bedingung u = 0, mit der der
Algorithmus abbricht, nach endlich vielen Schleifendurchläufen mit Sicherheit
erfüllt.

Für u=0 schreibt sich die Schleifeninvariante:

p  b0 = an

 p = an

Damit ist gezeigt, daß bei Abbruch des Algorithmus die Zahl an ausgegeben wird,
falls die Beziehung p  bu = an sich als Schleifeninvariante erweist.

Wir verifizieren die Behauptung, daß p  bu = an Schleifeninvariante ist,
vermöge vollständiger Induktion über den Index i, der den i-ten
Schleifendurchlauf bezeichnet (i = 1, 2, 3,).

Mit pi , bi und ui bezeichnen wir die Werte der Variablen p , b und u vor dem i-ten
Schleifendurchlauf.

Induktionsanfang (i=1):

Vor dem 1. Schleifendurchlauf gilt wegen p1 = 1 , b1 = a und u1 = n :

1   1
1 1

u n np b a a , somit ist die Beziehung p  bu = an für i=1 erfüllt.

Induktionsschritt:

Wir nehmen an, daß die Beziehung p  bu = an vor dem i-ten Schleifendurchlauf
erfüllt ist, daß also gilt:

 i
i i

u np b = a (*)

Wir verifizieren, daß unter der Induktionsannahme (*) die Beziehung p  bu = an
auch nach dem i-ten, also vor dem (i + 1)-ten Schleifendurchlauf erfüllt ist.

Dazu drücken wir die Werte pi+1 , bi+1 und ui+1 der Variablen p , b und u durch die
Werte pi , bi und ui aus. Da die Eigenschaft von u, gerade oder ungerade zu sein,
auf die Berechnung der neuen Werte von p , b und u Einfluß hat, müssen wir
eine Fallunterscheidung vornehmen:

 9

) u sei ungerade vor dem i-ten Schleifendurchlauf, also odd(ui) = TRUE .

 pi+1 = pi  bi  pi = pi+1 / bi

 bi+1 = bi  bi  bi =  bi+1

 ui+1 = (ui  1)/2  ui = 2  ui+1 + 1

 Wenn wir in die Gleichung (*) die für pi , bi und ui erhaltenen Werte
einsetzen, folgt (beachte die Schreibweise bu = b^u):

 an = pi  bi^ui

 = (pi+1 / bi)  ( bi+1)^(2  ui+1 + 1)

 = (pi+1 /  bi+1)  ( bi+1)^(2  ui+1 + 1)

 = pi+1  bi+1^ui+1

β) u sei gerade vor dem i-ten Schleifendurchlauf, also odd(ui) = FALSE .

 Übungsaufgabe!

Beispiel 11
(Korrektheitsbeweis für den Algorithmus „Ägyptische Multiplikation“):

Der folgende als Struktogramm gegebene Algorithmus verlangt natürliche Zahlen
a und b als Eingabe und liefert das Ergebnis s:

a) Begründe: Der Algorithmus terminiert für alle zulässigen Eingabewerte.

b) Verifiziere mit dem Beweisverfahren der Vollständigen Induktion:
 Die Beziehung

 s + u  v = a  b

 ist Schleifeninvariante.

c) Folgere: Der Algorithmus liefert mit s das Produkt der Eingabewerte a und b.

Bemerkung: Dieser Algorithmus benutzt die Verdopplung und die ganzzahlige Division durch 2 als
wesentliche Rechenoperationen. Diese Rechenoperationen lassen sich im Dualsystem besonders
einfach realisieren: Durch einen „leftshift“ um eine Stelle wird eine Dualzahl verdoppelt, mit einem
„rightshift“ um eine Stelle wird eine Dualzahl ganzzahlig halbiert.

leftshift: 00011101  00111010 (dezimal: 29 + 29 = 58)
rightshift: 00100111  00010011 (dezimal: 39 div 2 = 19)

Karl-Heinz Selbach
V/2025

